Stabilizing Machine Learning for Reproducible and Explainable Results: A Novel Validation Approach to Subject-Specific Insights
- URL: http://arxiv.org/abs/2412.16199v1
- Date: Mon, 16 Dec 2024 23:14:26 GMT
- Title: Stabilizing Machine Learning for Reproducible and Explainable Results: A Novel Validation Approach to Subject-Specific Insights
- Authors: Gideon Vos, Liza van Eijk, Zoltan Sarnyai, Mostafa Rahimi Azghadi,
- Abstract summary: We propose a novel validation approach that uses a general ML model to ensure reproducible performance and robust feature importance analysis.
We tested a single Random Forest (RF) model on nine datasets varying in domain, sample size, and demographics.
Our repeated trials approach consistently identified key features at the subject level and improved group-level feature importance analysis.
- Score: 2.7516838144367735
- License:
- Abstract: Machine Learning is transforming medical research by improving diagnostic accuracy and personalizing treatments. General ML models trained on large datasets identify broad patterns across populations, but their effectiveness is often limited by the diversity of human biology. This has led to interest in subject-specific models that use individual data for more precise predictions. However, these models are costly and challenging to develop. To address this, we propose a novel validation approach that uses a general ML model to ensure reproducible performance and robust feature importance analysis at both group and subject-specific levels. We tested a single Random Forest (RF) model on nine datasets varying in domain, sample size, and demographics. Different validation techniques were applied to evaluate accuracy and feature importance consistency. To introduce variability, we performed up to 400 trials per subject, randomly seeding the ML algorithm for each trial. This generated 400 feature sets per subject, from which we identified top subject-specific features. A group-specific feature importance set was then derived from all subject-specific results. We compared our approach to conventional validation methods in terms of performance and feature importance consistency. Our repeated trials approach, with random seed variation, consistently identified key features at the subject level and improved group-level feature importance analysis using a single general model. Subject-specific models address biological variability but are resource-intensive. Our novel validation technique provides consistent feature importance and improved accuracy within a general ML model, offering a practical and explainable alternative for clinical research.
Related papers
- Learning Personalized Treatment Decisions in Precision Medicine: Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction and Biomarker Identification [0.05277756703318046]
Precision medicine has the potential to tailor treatment decisions to individual patients using machine learning (ML) and artificial intelligence (AI)
It faces significant challenges due to complex biases in clinical observational data and the high-dimensional nature of biological data.
This study models various types of treatment assignment biases using mutual information and investigates their impact on ML models.
arXiv Detail & Related papers (2024-10-01T08:47:29Z) - Comparative Analysis of Data Preprocessing Methods, Feature Selection
Techniques and Machine Learning Models for Improved Classification and
Regression Performance on Imbalanced Genetic Data [0.0]
We investigated the effects of data preprocessing, feature selection techniques, and model selection on the performance of models trained on genetic datasets.
We found that outliers/skew in predictor or target variables did not pose a challenge to regression models.
We also found that class-imbalanced target variables and skewed predictors had little to no impact on classification performance.
arXiv Detail & Related papers (2024-02-22T21:41:27Z) - Dual-stage optimizer for systematic overestimation adjustment applied to
multi-objective genetic algorithms for biomarker selection [0.18648070031379424]
Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features.
We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation.
arXiv Detail & Related papers (2023-12-27T16:13:14Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Rethinking Mitosis Detection: Towards Diverse Data and Feature
Representation [30.882319057927052]
We propose a novel generalizable framework (MitDet) for mitosis detection.
Our proposed model outperforms all the SOTA approaches in several popular mitosis detection datasets.
arXiv Detail & Related papers (2023-07-12T03:33:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We propose a new approach for dealing with high-dimensional binary classification problems that combines ideas from regularization and ensembling.
We demonstrate the good performance of our method in terms of prediction accuracy and identification of key biomarkers using several medical datasets involving common diseases such as cancer, multiple sclerosis and psoriasis.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.