論文の概要: Towards Few-Shot Adaptation of Foundation Models via Multitask
Finetuning
- arxiv url: http://arxiv.org/abs/2402.15017v1
- Date: Thu, 22 Feb 2024 23:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 16:09:41.870535
- Title: Towards Few-Shot Adaptation of Foundation Models via Multitask
Finetuning
- Title(参考訳): マルチタスクファインタニングによる基礎モデルのFew-Shot適応に向けて
- Authors: Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, Yingyu Liang
- Abstract要約: 多くのAI問題に対する強力なツールとして、ファンデーションモデルが登場した。
本稿では,マルチタスクファインタニング手法の理論的正当性について検討する。
本稿では,タスク選択アルゴリズムが関連する微調整タスクを積極的に選択することを確認し,対象タスクにおけるモデル性能の利点を提供する。
- 参考スコア(独自算出の注目度): 20.727482935029375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have emerged as a powerful tool for many AI problems.
Despite the tremendous success of foundation models, effective adaptation to
new tasks, particularly those with limited labels, remains an open question and
lacks theoretical understanding. An emerging solution with recent success in
vision and NLP involves finetuning a foundation model on a selection of
relevant tasks, before its adaptation to a target task with limited labeled
samples. In this paper, we study the theoretical justification of this
multitask finetuning approach. Our theoretical analysis reveals that with a
diverse set of related tasks, this multitask finetuning leads to reduced error
in the target task, in comparison to directly adapting the same pretrained
model. We quantify the relationship between finetuning tasks and target tasks
by diversity and consistency metrics, and further propose a practical task
selection algorithm. We substantiate our theoretical claims with extensive
empirical evidence. Further, we present results affirming our task selection
algorithm adeptly chooses related finetuning tasks, providing advantages to the
model performance on target tasks. We believe our study shed new light on the
effective adaptation of foundation models to new tasks that lack abundant
labels. Our code is available at
https://github.com/OliverXUZY/Foudation-Model_Multitask.
- Abstract(参考訳): ファンデーションモデルは、多くのAI問題の強力なツールとして登場した。
基礎モデルの成功にもかかわらず、新しいタスク、特に限定ラベルを持つタスクへの効果的な適応は未解決の問題であり、理論的理解を欠いている。
視覚とNLPが最近成功した新しいソリューションは、限られたラベル付きサンプルで対象タスクに適応する前に、関連するタスクの選択に関する基礎モデルを微調整することである。
本稿では,このマルチタスクファインタニング手法の理論的正当性について検討する。
理論解析の結果,このマルチタスクの微調整は,同じ事前学習モデルを直接適用することに比べ,対象タスクの誤差を減少させることが明らかとなった。
タスクの微調整と対象タスクの関係を多様性と一貫性の指標を用いて定量化し,より実用的なタスク選択アルゴリズムを提案する。
我々は理論的な主張を広範な実証的な証拠で裏付ける。
さらに,対象タスクのモデル性能に有利な,関連する微調整タスクを適切に選択するタスク選択アルゴリズムを肯定する結果を提示する。
我々の研究は、豊富なラベルを欠いた新しいタスクに基礎モデルの効果的な適応に新たな光を当てたと信じている。
私たちのコードはhttps://github.com/OliverXUZY/Foudation-Model_Multitaskで利用可能です。
関連論文リスト
- Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
マルチタスク学習では、タスク勾配間の衝突は、モデルのトレーニングパフォーマンスを劣化させる頻繁な問題である。
本研究では,タスク優先順位付けを同時に行うために,グラディエント・プロジェクション・アルゴリズムであるPCGradを適用する手法を提案する。
従来のタスクの重み付けとは違い、重み付け方式は、タスクが矛盾している場合にのみ適用されるが、トレーニングを妨げない場合にのみ適用される。
論文 参考訳(メタデータ) (2024-09-03T11:17:44Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
Amortized Pareto Front (MAP) を用いた新しい低演算アルゴリズム Model Merging を導入する。
MAPは、複数のモデルをマージするためのスケーリング係数のセットを効率的に識別し、関連するトレードオフを反映する。
また,タスク数が比較的少ないシナリオではベイジアンMAP,タスク数の多い状況ではNested MAPを導入し,計算コストを削減した。
論文 参考訳(メタデータ) (2024-06-11T17:55:25Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
一貫性のないAIモデルは、人間のユーザーによって不安定で信頼できないと見なされている。
最先端のビジョン言語モデルは、タスク間の驚くほど高い一貫性のない振る舞いに悩まされている。
本稿では,大規模で自動生成されるクロスタスクコントラスト集合上で計算されたランク相関に基づく補助訓練目標を提案する。
論文 参考訳(メタデータ) (2023-03-28T16:57:12Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for
Downstream Tasks [55.431048995662714]
我々は、類似タスクの刈り取られたモデルから、新しいタスクのための小さなモデルを作成する。
このモデルに関するいくつかの微調整ステップは、新しいタスクに対して有望なプルーンドモデルを生成するのに十分であることを示す。
我々は, 単純だが効果的な'Meta-Vote Pruning (MVP)' 手法を開発した。
論文 参考訳(メタデータ) (2023-01-27T06:49:47Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
2タスクMTL問題に対する新しい学習フレームワークを提案する。
サイクル一貫性損失とコントラスト学習に着想を得た2つの新たな損失項を定義する。
理論的には、どちらの損失もモデルをより効率的に学習する助けとなり、直進予測と整合する点において、クロスタスクの整合性損失がより良いことを証明している。
論文 参考訳(メタデータ) (2021-11-28T11:55:19Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
マルチタスク学習(MTL)は、全てのタスクで優れたパフォーマンスを達成し、計算コストを下げるための複数のタスクを実行する単一のモデルを学習することである。
そのようなモデルを学ぶには、難易度、大きさ、特性の異なる一連のタスクの損失を共同で最適化する必要がある。
本研究では,マルチタスク学習における不均衡問題に対処するために,知識蒸留に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T08:02:42Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。