論文の概要: Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
- arxiv url: http://arxiv.org/abs/2402.15038v2
- Date: Fri, 28 Mar 2025 02:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:30:01.938004
- Title: Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
- Title(参考訳): センサレスロボットマニピュレータ設計のためのダイナミクス誘導拡散モデル
- Authors: Xiaomeng Xu, Huy Ha, Shuran Song,
- Abstract要約: 本稿では,DGDM(Dynamics-Guided Diffusion Model)を提案する。
オブジェクトの形状とタスク仕様が与えられた後、DGDMはセンサレスマニピュレータの設計を生成する。
生成した設計は、平均成功率で最適化ベースと非誘導拡散ベースラインを相対的に31.5%、45.3%上回った。
- 参考スコア(独自算出の注目度): 21.979720863113258
- License:
- Abstract: We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
- Abstract(参考訳): 本稿では,DGDM(Dynamics-Guided Diffusion Model)を提案する。
オブジェクトの形状とタスク仕様が与えられた後、DGDMはセンサレスマニピュレータの設計を生成する。
この枠組み
1)操作タスクを操作プロファイルとして柔軟に表現する。
2)幾何拡散モデルを用いて設計空間を表現し、
3)タスク情報なしでトレーニングされた動的ネットワークによって提供される勾配を用いて,この設計空間を効率的に探索する。
我々は、オブジェクトの移動・回転から、オブジェクトの収束から特定のポーズまで、さまざまな操作タスクにおけるDGDMを評価する。
生成した設計は、平均成功率で最適化ベースと非誘導拡散ベースラインを相対的に31.5%、45.3%上回った。
0.8秒以内に新しい設計を生成する機能により、DGDMは迅速な設計イテレーションを促進し、ロボット機構設計にデータ駆動アプローチを採用することを促進する。
質的な結果は、プロジェクトのWebサイトhttps://dgdm-robot.github.io/で最もよく見られます。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - PIVOT-R: Primitive-Driven Waypoint-Aware World Model for Robotic Manipulation [68.17081518640934]
ロボット操作のためのPrIrmitive-driVen waypOinT-aware world model(PIVOT-R)を提案する。
PIVOT-RはWAWM(Waypoint-aware World Model)と軽量アクション予測モジュールで構成される。
私たちのPIVOT-RはSeaWaveベンチマークで最先端のオープンソースモデルより優れており、4段階の命令タスクで平均19.45%の相対的な改善を実現しています。
論文 参考訳(メタデータ) (2024-10-14T11:30:18Z) - ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation [16.272352213590313]
拡散モデルは自然画像から運動軌道への複雑な分布を生成するのに有効であることが確認されている。
近年の手法では3次元ロボット操作作業において顕著な性能を示すが、複数のデノナイジングステップにより実行時の非効率が悪化している。
拡散過程に一貫性の制約を課すリアルタイムロボット操作モデルManiCMを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:59:23Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Learning visual-based deformable object rearrangement with local graph
neural networks [4.333220038316982]
本稿では,変形可能なオブジェクト状態とキーポイントの集合とその相互作用を効率的にモデル化できる新しい表現戦略を提案する。
また、変形可能な再配置ダイナミクスを共同でモデル化し、最適操作動作を推定するための光局所GNN学習を提案する。
本手法は, 各種変形可能なアレンジメントタスク(平均96.3%)において, シミュレーション実験における最先端手法よりもはるかに高い成功率を達成する。
論文 参考訳(メタデータ) (2023-10-16T11:42:54Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
本稿では3つの動作と3次元知覚タスクのための統一的な定式化とモデルを提案する。
これら3つのタスクを、統一された高密度対応マッチング問題として定式化する。
我々のモデルは、モデルアーキテクチャとパラメータがタスク間で共有されているため、自然にクロスタスク転送を可能にします。
論文 参考訳(メタデータ) (2022-11-10T18:59:54Z) - Efficient Automatic Machine Learning via Design Graphs [72.85976749396745]
最適なモデル設計を探索する効率的なサンプルベース手法であるFALCONを提案する。
FALCONは,1)グラフニューラルネットワーク(GNN)を介してデザイングラフ上でメッセージパッシングを行うタスク非依存モジュール,2)既知のモデル性能情報のラベル伝搬を行うタスク固有モジュールを特徴とする。
FALCONは,30個の探索ノードのみを用いて,各タスクに対して良好な性能を持つ設計を効率的に得ることを実証的に示す。
論文 参考訳(メタデータ) (2022-10-21T21:25:59Z) - SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp
and motion optimization through diffusion [34.25379651790627]
本研究では,データ駆動型SE(3)コスト関数を拡散モデルとして学習する手法を提案する。
我々は6DoFグルーピングのためのSE(3)拡散モデルの学習に重点を置いており、関節グルーピングと運動最適化のための新しい枠組みを生み出している。
論文 参考訳(メタデータ) (2022-09-08T14:50:23Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
逆設計では、学習したフォワードシミュレータは勾配に基づく設計最適化と組み合わせられる。
この枠組みは数百歩の軌跡を伝播することで高品質な設計を行う。
この結果から,機械学習をベースとしたシミュレータは,いくつかの課題があるにもかかわらず,汎用設計の最適化をサポートできる段階まで成熟していることが示唆された。
論文 参考訳(メタデータ) (2022-02-01T19:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。