Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions
- URL: http://arxiv.org/abs/2402.15055v2
- Date: Wed, 23 Oct 2024 13:20:15 GMT
- Title: Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions
- Authors: Clement Neo, Shay B. Cohen, Fazl Barez,
- Abstract summary: This study investigates how attention heads and next-token neurons interact in large language models (LLMs) to predict new words.
Our findings reveal that some attention heads recognize specific contexts and activate a token-predicting neuron accordingly.
- Score: 19.33740818235595
- License:
- Abstract: Understanding the inner workings of large language models (LLMs) is crucial for advancing their theoretical foundations and real-world applications. While the attention mechanism and multi-layer perceptrons (MLPs) have been studied independently, their interactions remain largely unexplored. This study investigates how attention heads and next-token neurons interact in LLMs to predict new words. We propose a methodology to identify next-token neurons, find prompts that highly activate them, and determine the upstream attention heads responsible. We then generate and evaluate explanations for the activity of these attention heads in an automated manner. Our findings reveal that some attention heads recognize specific contexts relevant to predicting a token and activate a downstream token-predicting neuron accordingly. This mechanism provides a deeper understanding of how attention heads work with MLP neurons to perform next-token prediction. Our approach offers a foundation for further research into the intricate workings of LLMs and their impact on text generation and understanding.
Related papers
- An Investigation of Neuron Activation as a Unified Lens to Explain Chain-of-Thought Eliciting Arithmetic Reasoning of LLMs [8.861378619584093]
Large language models (LLMs) have shown strong arithmetic reasoning capabilities when prompted with Chain-of-Thought prompts.
We investigate neuron activation'' as a lens to provide a unified explanation to observations made by prior work.
arXiv Detail & Related papers (2024-06-18T05:49:24Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
We aim to fill the research gap by examining how neuron activation is shared across tasks and languages.
We classify neurons into four distinct categories based on their responses to a specific input across different languages.
Our analysis reveals the following insights: (i) the patterns of neuron sharing are significantly affected by the characteristics of tasks and examples; (ii) neuron sharing does not fully correspond with language similarity; (iii) shared neurons play a vital role in generating responses, especially those shared across all languages.
arXiv Detail & Related papers (2024-06-13T16:04:11Z) - Linking In-context Learning in Transformers to Human Episodic Memory [1.124958340749622]
We focus on induction heads, which contribute to in-context learning in Transformer-based large language models.
We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval model of human episodic memory.
arXiv Detail & Related papers (2024-05-23T18:51:47Z) - Identifying Semantic Induction Heads to Understand In-Context Learning [103.00463655766066]
We investigate whether attention heads encode two types of relationships between tokens present in natural languages.
We find that certain attention heads exhibit a pattern where, when attending to head tokens, they recall tail tokens and increase the output logits of those tail tokens.
arXiv Detail & Related papers (2024-02-20T14:43:39Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
We show that as large language models (LLMs) achieve higher performance on benchmark tasks, they become more brain-like.
We also show the importance of contextual information in improving model performance and brain similarity.
arXiv Detail & Related papers (2024-01-31T08:48:35Z) - Reliability Analysis of Psychological Concept Extraction and
Classification in User-penned Text [9.26840677406494]
We use the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users.
Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation.
arXiv Detail & Related papers (2024-01-12T17:19:14Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.