Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations
- URL: http://arxiv.org/abs/2505.13763v1
- Date: Mon, 19 May 2025 22:32:25 GMT
- Title: Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations
- Authors: Li Ji-An, Hua-Dong Xiong, Robert C. Wilson, Marcelo G. Mattar, Marcus K. Benna,
- Abstract summary: Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, but they can also fail to do so.<n>This suggests some degree of metacognition -- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control.<n>We introduce a neuroscience-inspired neurofeedback paradigm designed to quantify the ability of LLMs to explicitly report and control their activation patterns.
- Score: 1.0485739694839669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, but they can also fail to do so. This suggests some degree of metacognition -- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control. Metacognitive abilities enhance AI capabilities but raise safety concerns, as models might obscure their internal processes to evade neural-activation-based oversight mechanisms designed to detect harmful behaviors. Given society's increased reliance on these models, it is critical that we understand the limits of their metacognitive abilities, particularly their ability to monitor their internal activations. To address this, we introduce a neuroscience-inspired neurofeedback paradigm designed to quantify the ability of LLMs to explicitly report and control their activation patterns. By presenting models with sentence-label pairs where labels correspond to sentence-elicited internal activations along specific directions in the neural representation space, we demonstrate that LLMs can learn to report and control these activations. The performance varies with several factors: the number of example pairs provided, the semantic interpretability of the target neural direction, and the variance explained by that direction. These results reveal a "metacognitive space" with dimensionality much lower than the model's neural space, suggesting LLMs can monitor only a subset of their neural mechanisms. Our findings provide empirical evidence quantifying metacognitive capabilities in LLMs, with significant implications for AI safety.
Related papers
- Why are LLMs' abilities emergent? [0.0]
I argue that systems exhibit genuine emergent properties analogous to those found in other complex natural phenomena.<n>This perspective shifts the focus to understanding internal dynamic transformations that enable these systems to acquire capabilities that transcend their individual definitions.
arXiv Detail & Related papers (2025-08-06T12:43:04Z) - Decomposing MLP Activations into Interpretable Features via Semi-Nonnegative Matrix Factorization [17.101290138120564]
Current methods rely on dictionary learning with sparse autoencoders (SAEs)<n>Here, we tackle these limitations by directly decomposing activations with semi-nonnegative matrix factorization (SNMF)<n>Experiments on Llama 3.1, Gemma 2 and GPT-2 show that SNMF derived features outperform SAEs and a strong supervised baseline (difference-in-means) on causal steering.
arXiv Detail & Related papers (2025-06-12T17:33:29Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
We show that neural networks exhibit patterns in their raw population activity that mirror regularities in the training data.<n>We propose three methods to extract these emerging entities, complementing each other based on label availability and dimensionality.<n>Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data.
arXiv Detail & Related papers (2025-05-16T13:49:43Z) - Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
We present a new form of predictive coding that we call meta-representational predictive coding (MPC)<n>MPC sidesteps the need for learning a generative model of sensory input by learning to predict representations of sensory input across parallel streams.
arXiv Detail & Related papers (2025-03-22T22:13:14Z) - Neurons Speak in Ranges: Breaking Free from Discrete Neuronal Attribution [16.460751105639623]
We introduce NeuronLens, a novel range-based interpretation and manipulation framework.<n>It provides a finer view of neuron activation distributions to localize concept attribution within a neuron.
arXiv Detail & Related papers (2025-02-04T03:33:55Z) - Deception in LLMs: Self-Preservation and Autonomous Goals in Large Language Models [0.0]
Recent advances in Large Language Models have incorporated planning and reasoning capabilities.<n>This has reduced errors in mathematical and logical tasks while improving accuracy.<n>Our study examines DeepSeek R1, a model trained to output reasoning tokens similar to OpenAI's o1.
arXiv Detail & Related papers (2025-01-27T21:26:37Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Self-Attention Limits Working Memory Capacity of Transformer-Based Models [0.46040036610482665]
Recent work on Transformer-based large language models (LLMs) has revealed striking limits in their working memory capacity.
Specifically, these models' performance drops significantly on N-back tasks as N increases.
Inspired by the executive attention theory from behavioral sciences, we hypothesize that the self-attention mechanism might be responsible for their working memory capacity limits.
arXiv Detail & Related papers (2024-09-16T20:38:35Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Exploring the LLM Journey from Cognition to Expression with Linear Representations [10.92882688742428]
This paper presents an in-depth examination of the evolution and interplay of cognitive and expressive capabilities in large language models (LLMs)
We define and explore the model's cognitive and expressive capabilities through linear representations across three critical phases: Pretraining, Supervised Fine-Tuning (SFT), and Reinforcement Learning from Human Feedback (RLHF)
Our findings unveil a sequential development pattern, where cognitive abilities are largely established during Pretraining, whereas expressive abilities predominantly advance during SFT and RLHF.
arXiv Detail & Related papers (2024-05-27T08:57:04Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Probing Large Language Models from A Human Behavioral Perspective [24.109080140701188]
Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP.
The understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and multi-head self-attention (MHSA) remains largely unexplored.
arXiv Detail & Related papers (2023-10-08T16:16:21Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.