Chu-ko-nu: A Reliable, Efficient, and Anonymously Authentication-Enabled Realization for Multi-Round Secure Aggregation in Federated Learning
- URL: http://arxiv.org/abs/2402.15111v2
- Date: Sat, 15 Jun 2024 13:14:54 GMT
- Title: Chu-ko-nu: A Reliable, Efficient, and Anonymously Authentication-Enabled Realization for Multi-Round Secure Aggregation in Federated Learning
- Authors: Kaiping Cui, Xia Feng, Liangmin Wang, Haiqin Wu, Xiaoyu Zhang, Boris Düdder,
- Abstract summary: We propose a more reliable and anonymously authenticated scheme called Chu-ko-nu for secure aggregation.
Chu-ko-nu breaks the probability P barrier by supplementing a redistribution process of secret key components.
It can support clients anonymously participating in FL training and enables the server to authenticate clients effectively in the presence of attacks.
- Score: 13.64339376830805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secure aggregation enables federated learning (FL) to perform collaborative training of clients from local gradient updates without exposing raw data. However, existing secure aggregation schemes inevitably perform an expensive fresh setup per round because each client needs to establish fresh input-independent secrets over different rounds. The latest research, Flamingo (S&P 2023), designed a share-transfer-based reusable secret key to support the server continuously performing multiple rounds of aggregation. Nevertheless, the share transfer mechanism it proposed can only be achieved with P probability, which has limited reliability. To tackle the aforementioned problems, we propose a more reliable and anonymously authenticated scheme called Chu-ko-nu for multi-round secure aggregation. Specifically, in terms of share transfer, Chu-ko-nu breaks the probability P barrier by supplementing a redistribution process of secret key components (the sum of all components is the secret key), thus ensuring the reusability of the secret key. Based on this reusable secret key, Chu-ko-nu can efficiently perform consecutive aggregation in the following rounds. Furthermore, considering the client identity authentication and privacy protection issue most approaches ignore, Chu-ko-nu introduces a zero-knowledge proof-based authentication mechanism. It can support clients anonymously participating in FL training and enables the server to authenticate clients effectively in the presence of various attacks. Rigorous security proofs and extensive experiments demonstrated that Chu-ko-nu can provide reliable and anonymously authenticated aggregation for FL with low aggregation costs, at least a 21.02% reduction compared to the state-of-the-art schemes.
Related papers
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Trust Driven On-Demand Scheme for Client Deployment in Federated Learning [39.9947471801304]
"Trusted-On-Demand-FL" establishes a relationship of trust between the server and the pool of eligible clients.
Our simulations rely on a continuous user behavior dataset, deploying an optimization model powered by a genetic algorithm.
arXiv Detail & Related papers (2024-05-01T08:50:08Z) - Fluent: Round-efficient Secure Aggregation for Private Federated
Learning [23.899922716694427]
Federated learning (FL) facilitates collaborative training of machine learning models among a large number of clients.
FL remains susceptible to vulnerabilities such as privacy inference and inversion attacks.
This work introduces Fluent, a round and communication-efficient secure aggregation scheme for private FL.
arXiv Detail & Related papers (2024-03-10T09:11:57Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
We introduce ScionFL, the first secure aggregation framework for federated learning.
It operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients.
We show that with no overhead for clients and moderate overhead for the server, we obtain comparable accuracy for standard FL benchmarks.
arXiv Detail & Related papers (2022-10-13T21:46:55Z) - FLCert: Provably Secure Federated Learning against Poisoning Attacks [67.8846134295194]
We propose FLCert, an ensemble federated learning framework that is provably secure against poisoning attacks.
Our experiments show that the label predicted by our FLCert for a test input is provably unaffected by a bounded number of malicious clients.
arXiv Detail & Related papers (2022-10-02T17:50:04Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
This paper provides the first general framework, Certifiably Robust Federated Learning (CRFL), to train certifiably robust FL models against backdoors.
Our method exploits clipping and smoothing on model parameters to control the global model smoothness, which yields a sample-wise robustness certification on backdoors with limited magnitude.
arXiv Detail & Related papers (2021-06-15T16:50:54Z) - Towards Bidirectional Protection in Federated Learning [70.36925233356335]
F2ED-LEARNING offers bidirectional defense against malicious centralized server and Byzantine malicious clients.
F2ED-LEARNING securely aggregates each shard's update and launches FilterL2 on updates from different shards.
evaluation shows that F2ED-LEARNING consistently achieves optimal or close-to-optimal performance.
arXiv Detail & Related papers (2020-10-02T19:37:02Z) - FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated
Learning [18.237186837994585]
A'secure aggregation' protocol enables the server to aggregate clients' models in a privacy-preserving manner.
FastSecAgg is efficient in terms of computation and communication, and robust to client dropouts.
arXiv Detail & Related papers (2020-09-23T16:49:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.