論文の概要: MACRec: a Multi-Agent Collaboration Framework for Recommendation
- arxiv url: http://arxiv.org/abs/2402.15235v3
- Date: Fri, 01 Nov 2024 02:00:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 11:30:16.403575
- Title: MACRec: a Multi-Agent Collaboration Framework for Recommendation
- Title(参考訳): MACRec:レコメンデーションのためのマルチエージェントコラボレーションフレームワーク
- Authors: Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma, Min Zhang,
- Abstract要約: マルチエージェントコラボレーションによるレコメンデーションシステムを強化するための新しいフレームワークであるMACRecを紹介する。
ユーザ/イテムシミュレーションにエージェントを使用する既存の作業とは異なり、マルチエージェントをデプロイしてレコメンデーションタスクに直接取り組もうとしている。
本稿では、評価予測、逐次レコメンデーション、会話レコメンデーション、レコメンデーション結果の説明生成など、様々なレコメンデーションタスクで開発者がMACRecを簡単に利用できるアプリケーションの例を示す。
- 参考スコア(独自算出の注目度): 21.425320819792912
- License:
- Abstract: LLM-based agents have gained considerable attention for their decision-making skills and ability to handle complex tasks. Recognizing the current gap in leveraging agent capabilities for multi-agent collaboration in recommendation systems, we introduce MACRec, a novel framework designed to enhance recommendation systems through multi-agent collaboration. Unlike existing work on using agents for user/item simulation, we aim to deploy multi-agents to tackle recommendation tasks directly. In our framework, recommendation tasks are addressed through the collaborative efforts of various specialized agents, including Manager, User/Item Analyst, Reflector, Searcher, and Task Interpreter, with different working flows. Furthermore, we provide application examples of how developers can easily use MACRec on various recommendation tasks, including rating prediction, sequential recommendation, conversational recommendation, and explanation generation of recommendation results. The framework and demonstration video are publicly available at https://github.com/wzf2000/MACRec.
- Abstract(参考訳): LLMをベースとしたエージェントは、意思決定スキルと複雑なタスクを扱う能力にかなりの注目を集めている。
推薦システムにおけるエージェント機能を活用したマルチエージェントコラボレーションの現在のギャップを認識し,マルチエージェントコラボレーションを通じてレコメンデーションシステムを強化するための新しいフレームワークであるMACRecを紹介する。
ユーザ/イテムシミュレーションにエージェントを使用する既存の作業とは異なり、マルチエージェントをデプロイしてレコメンデーションタスクに直接取り組もうとしている。
本フレームワークでは,マネージャ,ユーザ/項目分析,リフレクタ,検索,タスクインタープリタなど,さまざまな専門エージェントの協調作業を通じて,リコメンデーションタスクに対処する。
さらに、評価予測、シーケンシャルレコメンデーション、会話レコメンデーション、レコメンデーション結果の説明生成など、様々なレコメンデーションタスクで開発者がどのようにMACRecを簡単に利用できるかを示すアプリケーション例を提供する。
フレームワークとデモビデオはhttps://github.com/wzf2000/MACRec.comで公開されている。
関連論文リスト
- FLOW: A Feedback LOop FrameWork for Simultaneously Enhancing Recommendation and User Agents [28.25107058257086]
本稿では,フィードバックループを導入することで,推薦エージェントとユーザエージェントの協調を実現するFLOWという新しいフレームワークを提案する。
具体的には、従来提案されていた項目に対するユーザエージェントのフィードバックを分析して、ユーザの好みに対する理解を深める。
この反復的精錬プロセスは、レコメンデーションエージェントとユーザエージェントの両方の推論能力を高め、より正確なレコメンデーションを可能にする。
論文 参考訳(メタデータ) (2024-10-26T00:51:39Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - Prospect Personalized Recommendation on Large Language Model-based Agent
Platform [71.73768586184404]
本稿では,エージェントアイテムとエージェントレコメンダで構成されるRec4Agentverseという新しいレコメンデーションパラダイムを紹介する。
Rec4AgentverseはAgentItemsとAgent Recommenderのコラボレーションを強調し、パーソナライズされた情報サービスを促進する。
Rec4Agentverseのいくつかの症例に関する予備研究は、その応用の可能性を検証する。
論文 参考訳(メタデータ) (2024-02-28T11:12:17Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
MARLのための2種類のポリシー記述を生成するための新しい手法を提案する。
3つのMARL領域の実験結果から,提案手法のスケーラビリティが実証された。
ユーザスタディでは、生成された説明がユーザパフォーマンスを著しく改善し、ユーザ満足度などの指標に対する主観的評価が向上することを示した。
論文 参考訳(メタデータ) (2022-04-26T20:07:08Z) - MACRPO: Multi-Agent Cooperative Recurrent Policy Optimization [17.825845543579195]
我々はtextitMulti-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO) と呼ばれる新しいマルチエージェントアクター批判手法を提案する。
我々は、批評家のネットワークアーキテクチャにおいてリカレント・レイヤを使用し、メタ・トラジェクトリを使用してリカレント・レイヤをトレーニングする新しいフレームワークを提案する。
連続的および離散的な行動空間を持つ3つの挑戦的マルチエージェント環境において,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-09-02T12:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。