Optimal Transport on the Lie Group of Roto-translations
- URL: http://arxiv.org/abs/2402.15322v3
- Date: Wed, 13 Nov 2024 14:17:35 GMT
- Title: Optimal Transport on the Lie Group of Roto-translations
- Authors: Daan Bon, Gautam Pai, Gijs Bellaard, Olga Mula, Remco Duits,
- Abstract summary: We develop a computational framework for optimal transportation over Lie groups, with a special focus on SE2.
We make several theoretical contributions (generalizable to matrix Lie groups)
We develop a Sinkhorn like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions.
- Score: 1.8990839669542956
- License:
- Abstract: The roto-translation group SE2 has been of active interest in image analysis due to methods that lift the image data to multi-orientation representations defined on this Lie group. This has led to impactful applications of crossing-preserving flows for image de-noising, geodesic tracking, and roto-translation equivariant deep learning. In this paper, we develop a computational framework for optimal transportation over Lie groups, with a special focus on SE2. We make several theoretical contributions (generalizable to matrix Lie groups) such as the non-optimality of group actions as transport maps, invariance and equivariance of optimal transport, and the quality of the entropic-regularized optimal transport plan using geodesic distance approximations. We develop a Sinkhorn like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions. We report valuable advancements in the experiments on 1) image barycentric interpolation, 2) interpolation of planar orientation fields, and 3) Wasserstein gradient flows on SE2. We observe that our framework of lifting images to SE2 and optimal transport with left-invariant anisotropic metrics leads to equivariant transport along dominant contours and salient line structures in the image. This yields sharper and more meaningful interpolations compared to their counterparts on R^2
Related papers
- Improving Neural Optimal Transport via Displacement Interpolation [16.474572112062535]
Optimal Transport (OT) theory investigates the cost-minimizing transport map that moves a source distribution to a target distribution.
We propose a novel method to improve stability and achieve a better approximation of the OT Map by exploiting displacement.
We demonstrate that DIOTM outperforms existing OT-based models on image-to-image translation tasks.
arXiv Detail & Related papers (2024-10-03T16:42:23Z) - Theory and Approximate Solvers for Branched Optimal Transport with
Multiple Sources [12.139222986297263]
Branched Optimal Transport (BOT) is a generalization of optimal transport in which transportation costs along an edge are subadditive.
We show how to efficiently find the best geometry of a BOT network for many sources and sinks, given a topology.
arXiv Detail & Related papers (2022-10-14T10:51:16Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOT is an information-theoretic extension of optimal transport.
It maximizes the mutual information between domains while minimizing geometric distances.
This formulation yields a new projection method that is robust to outliers and generalizes to unseen samples.
arXiv Detail & Related papers (2022-10-06T18:55:41Z) - Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set [5.17395782758526]
This paper proposes an algorithm to extract the global model for cluster merging and designs a parallel SfM solution to achieve efficient and accurate UAV image orientation.
The experimental results demonstrate that the proposed parallel SfM can achieve 17.4 times efficiency improvement and comparative orientation accuracy.
arXiv Detail & Related papers (2022-06-23T06:53:06Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC)
MSPC enforces a spatial perturbation function (T ) and the translation operator (G) to be commutative (i.e., TG = GT )
Our method outperforms the state-of-the-art methods on most I2I benchmarks.
arXiv Detail & Related papers (2022-03-23T19:59:04Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
Real-world image super-resolution (SR) tasks often do not have paired datasets limiting the application of supervised techniques.
We propose an algorithm for unpaired SR which learns an unbiased OT map for the perceptual transport cost.
Our algorithm provides nearly state-of-the-art performance on the large-scale unpaired AIM-19 dataset.
arXiv Detail & Related papers (2022-02-02T16:21:20Z) - Graph Optimal Transport for Cross-Domain Alignment [121.80313648519203]
Cross-domain alignment is fundamental to computer vision and natural language processing.
We propose Graph Optimal Transport (GOT), a principled framework that germinates from recent advances in Optimal Transport (OT)
Experiments show consistent outperformance of GOT over baselines across a wide range of tasks.
arXiv Detail & Related papers (2020-06-26T01:14:23Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
Cross-view geo-localization is a problem given a large-scale database of geo-tagged aerial images.
Knowing orientation between ground and aerial images can significantly reduce matching ambiguity between these two views.
We design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization.
arXiv Detail & Related papers (2020-05-08T05:21:16Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.