Information-Theoretic Safe Bayesian Optimization
- URL: http://arxiv.org/abs/2402.15347v2
- Date: Fri, 10 May 2024 10:47:25 GMT
- Title: Information-Theoretic Safe Bayesian Optimization
- Authors: Alessandro G. Bottero, Carlos E. Luis, Julia Vinogradska, Felix Berkenkamp, Jan Peters,
- Abstract summary: We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
- Score: 59.758009422067005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an a~priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown functions and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. The combination of this exploration criterion with a well known Bayesian optimization acquisition function yields a novel safe Bayesian optimization selection criterion. Our approach is naturally applicable to continuous domains and does not require additional explicit hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we learn about the value of the safe optimum up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
Related papers
- Uncertainty Estimation for Safety-critical Scene Segmentation via
Fine-grained Reward Maximization [12.79542334840646]
Uncertainty estimation plays an important role for future reliable deployment of deep segmentation models in safety-critical scenarios.
We propose a novel fine-grained reward (FGRM) framework to address uncertainty estimation.
Our method outperforms state-of-the-art methods by a clear margin on all the calibration metrics of uncertainty estimation.
arXiv Detail & Related papers (2023-11-05T17:43:37Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2022-12-09T15:23:58Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Robustness Guarantees for Credal Bayesian Networks via Constraint
Relaxation over Probabilistic Circuits [16.997060715857987]
We develop a method to quantify the robustness of decision functions with respect to credal Bayesian networks.
We show how to obtain a guaranteed upper bound on MARmax in linear time in the size of the circuit.
arXiv Detail & Related papers (2022-05-11T22:37:07Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.