Safety in safe Bayesian optimization and its ramifications for control
- URL: http://arxiv.org/abs/2501.13697v1
- Date: Thu, 23 Jan 2025 14:24:11 GMT
- Title: Safety in safe Bayesian optimization and its ramifications for control
- Authors: Christian Fiedler, Johanna Menn, Sebastian Trimpe,
- Abstract summary: In control engineering, parameters of a pre-designed controller are often tuned online in feedback with a plant.
In particular, machine learning methods have been deployed for this important problem, in particular, Bayesian optimization (BO)
We identify two significant obstacles to practical safety. First, SafeOpt-type algorithms rely on quantitative uncertainty bounds, and most implementations replace these by theoretically unsupporteds.
We propose Lipschitz-only Safe Bayesian Optimization (LoSBO), a safe BO algorithm that relies only on a known Lipschitz bound for its safety.
- Score: 6.450289319821615
- License:
- Abstract: A recurring and important task in control engineering is parameter tuning under constraints, which conceptually amounts to optimization of a blackbox function accessible only through noisy evaluations. For example, in control practice parameters of a pre-designed controller are often tuned online in feedback with a plant, and only safe parameter values should be tried, avoiding for example instability. Recently, machine learning methods have been deployed for this important problem, in particular, Bayesian optimization (BO). To handle safety constraints, algorithms from safe BO have been utilized, especially SafeOpt-type algorithms, which enjoy considerable popularity in learning-based control, robotics, and adjacent fields. However, we identify two significant obstacles to practical safety. First, SafeOpt-type algorithms rely on quantitative uncertainty bounds, and most implementations replace these by theoretically unsupported heuristics. Second, the theoretically valid uncertainty bounds crucially depend on a quantity - the reproducing kernel Hilbert space norm of the target function - that at present is impossible to reliably bound using established prior engineering knowledge. By careful numerical experiments we show that these issues can indeed cause safety violations. To overcome these problems, we propose Lipschitz-only Safe Bayesian Optimization (LoSBO), a safe BO algorithm that relies only on a known Lipschitz bound for its safety. Furthermore, we propose a variant (LoS-GP-UCB) that avoids gridding of the search space and is therefore applicable even for moderately high-dimensional problems.
Related papers
- DADEE: Well-calibrated uncertainty quantification in neural networks for barriers-based robot safety [1.680461336282617]
Control Barrier Functions (CBFs) based approaches are popular because they are fast, yet safe.
GPs and MC-Dropout for learning and uncertainty estimation come with drawbacks.
GPs are non-parametric methods that are slow, while MC-Dropout does not capture aleatoric uncertainty.
We combine the two approaches to obtain more accurate uncertainty estimates both in- and out-of-domain.
arXiv Detail & Related papers (2024-06-30T07:55:32Z) - On Safety in Safe Bayesian Optimization [5.9045432488022485]
We investigate three safety-related issues of the popular class of SafeOpt-type algorithms.
First, these algorithms critically rely on frequentist bounds uncertainty for Gaussian Process (GP) regression.
Second, we identify assuming an upper bound on the reproducing kernel Hilbert space (RKHS) norm of the target function.
Third, SafeOpt and derived algorithms rely on a discrete search space, making them difficult to apply to higher-dimensional problems.
arXiv Detail & Related papers (2024-03-19T17:50:32Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2024-02-23T14:31:10Z) - Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction [36.14499894307206]
Black-box zero-th order optimization is a central primitive for applications in fields as diverse as finance, physics, and engineering.
In this paper, we study scenarios in which feedback is also provided on the safety of the attempted solution.
A novel BO-based approach is introduced that satisfies safety requirements irrespective of properties of the constraint function.
arXiv Detail & Related papers (2023-06-30T17:26:49Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2022-12-09T15:23:58Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.