論文の概要: Outlier detection by ensembling uncertainty with negative objectness
- arxiv url: http://arxiv.org/abs/2402.15374v1
- Date: Fri, 23 Feb 2024 15:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 14:10:29.970402
- Title: Outlier detection by ensembling uncertainty with negative objectness
- Title(参考訳): 負の客観性を持つ不確かさをアンサンブルする外乱検出
- Authors: Anja Deli\'c, Matej Grci\'c and Sini\v{s}a \v{S}egvi\'c
- Abstract要約: 外乱検出は、教師付き視覚認識の安全クリティカルな応用に欠かせない能力である。
我々は、K の基底クラスと1つの外れ値クラスに対応する K+1 ロジットの直接予測を再考する。
K+2クラスにマスクレベルの認識を組み込んだ高密度予測アーキテクチャに本手法を組み込む。
- 参考スコア(独自算出の注目度): 2.378735224874938
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Outlier detection is an essential capability in safety-critical applications
of supervised visual recognition. Most of the existing methods deliver best
results by encouraging standard closed-set models to produce low-confidence
predictions in negative training data. However, that approach conflates
prediction uncertainty with recognition of the negative class. We therefore
reconsider direct prediction of K+1 logits that correspond to K groundtruth
classes and one outlier class. This setup allows us to formulate a novel
anomaly score as an ensemble of in-distribution uncertainty and the posterior
of the outlier class which we term negative objectness. Now outliers can be
independently detected due to i) high prediction uncertainty or ii) similarity
with negative data. We embed our method into a dense prediction architecture
with mask-level recognition over K+2 classes. The training procedure encourages
the novel K+2-th class to learn negative objectness at pasted negative
instances. Our models outperform the current state-of-the art on standard
benchmarks for image-wide and pixel-level outlier detection with and without
training on real negative data.
- Abstract(参考訳): 外乱検出は、教師付き視覚認識の安全クリティカルな応用に欠かせない能力である。
既存の手法のほとんどは、標準のクローズドセットモデルに負のトレーニングデータで低信頼の予測を奨励することで、最高の結果を提供する。
しかし、このアプローチは負のクラスを認識することで予測の不確かさを和らげる。
したがって、K の基底クラスと 1 の外れ値クラスに対応する K+1 の対数を直接予測する。
この設定により、非分布不確実性のアンサンブルとして新しい異常スコアを定式化し、負の客観性(英語版)と称する外れ値クラスの後部を定式化することができる。
現在、アウトリーチは独立して検出できる
一 高い予測の不確実性又は
二 負のデータとの類似性
K+2クラスにマスクレベルの認識を組み込んだ高密度予測アーキテクチャに本手法を組み込む。
トレーニング手順は、新しいK+2クラスがペーストされた負のインスタンスで負のオブジェクト性を学ぶことを奨励する。
我々のモデルは、実際の負のデータをトレーニングすることなく、画像全体および画素レベルの異常検出のための標準ベンチマークの最先端技術より優れている。
関連論文リスト
- Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
本稿では,意味的かつ解釈可能な表現の作成を監督するために,EMG PRにおける深層メートル法メタラーニングへのシフトを提案する。
我々は、不正確な決定をよりよく拒否する頑健なクラス近接性に基づく信頼度推定器を導出する。
論文 参考訳(メタデータ) (2024-04-17T23:37:50Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - Quantile-based Maximum Likelihood Training for Outlier Detection [5.902139925693801]
我々は,推定時の外乱分離を改善するために,不整合分布を学習するための量子化に基づく最大極大目標を提案する。
本手法は, 事前学習した識別特徴に正規化フローを適合させ, 評価されたログ類似度に応じて異常値を検出する。
論文 参考訳(メタデータ) (2023-08-20T22:27:54Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
オープンセット半教師付き学習(Open-set SSL)は、ラベル付きデータ(inliers)で観測されない新しいカテゴリ(outliers)を含むラベル付きデータとテストデータを含む、より実践的なシナリオである。
本研究では,様々な不確かさを定量化するための外乱検出器として顕在的深層学習(EDL)を導入し,自己学習と推論のための異なる不確実性指標を設計する。
Inlierとoutlierの両方を含むラベルなしデータセットに適合するように、新しい適応的負の最適化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-21T09:07:15Z) - EvCenterNet: Uncertainty Estimation for Object Detection using
Evidential Learning [26.535329379980094]
EvCenterNetは、新しい不確実性を認識した2Dオブジェクト検出フレームワークである。
分類と回帰の不確実性の両方を推定するために、顕在的学習を用いる。
我々は、KITTIデータセット上でモデルをトレーニングし、配布外のデータセットに挑戦して評価する。
論文 参考訳(メタデータ) (2023-03-06T11:07:11Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
道路走行シーンとリモートセンシング画像における分布外異常の検出方法を示す。
我々は,カバレッジ指向学習の目的と異なる解像度でサンプルを生成する能力により,共同で訓練された正規化フローを活用する。
結果として得られたモデルは、道路走行シーンとリモートセンシング画像におけるアウト・オブ・ディストリビューション検出のためのベンチマークに、新たな技術状況を設定した。
論文 参考訳(メタデータ) (2021-12-23T20:35:10Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
画像分類において、サンプルワイドの不整合は「負のフリップ」として現れる
新しいモデルは、古い(参照)モデルによって正しく分類されたテストサンプルの出力を誤って予測する。
そこで本研究では,PC トレーニングのための簡易なアプローチである Focal Distillation を提案する。
論文 参考訳(メタデータ) (2020-11-18T09:00:44Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Asymptotic Behavior of Adversarial Training in Binary Classification [41.7567932118769]
敵の訓練は、敵の攻撃に対する防衛の最先端の方法と考えられている。
実際に成功したにもかかわらず、敵の訓練のパフォーマンスを理解する上でのいくつかの問題は未解決のままである。
2進分類における対角訓練の最小化のための正確な理論的予測を導出する。
論文 参考訳(メタデータ) (2020-10-26T01:44:20Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
肯定的信頼度(Pconf)分類は、有望な弱教師付き学習法である。
実際には、信頼はアノテーションプロセスで生じるバイアスによって歪められることがある。
本稿では、スキュード信頼度のパラメータ化モデルを導入し、ハイパーパラメータを選択する方法を提案する。
論文 参考訳(メタデータ) (2020-01-29T00:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。