論文の概要: A Comprehensive Survey of Convolutions in Deep Learning: Applications,
Challenges, and Future Trends
- arxiv url: http://arxiv.org/abs/2402.15490v2
- Date: Wed, 28 Feb 2024 08:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 17:32:40.186881
- Title: A Comprehensive Survey of Convolutions in Deep Learning: Applications,
Challenges, and Future Trends
- Title(参考訳): 深層学習における畳み込みの包括的調査 : 応用,課題,将来動向
- Authors: Abolfazl Younesi, Mohsen Ansari, MohammadAmin Fazli, Alireza Ejlali,
Muhammad Shafique, J\"org Henkel
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、画像分類、オブジェクト検出、画像分割といった様々なコンピュータビジョンタスクに使用される。
1D、2D、3D CNNなど、特定のニーズと要求を満たすように設計されたCNNには、数多くの種類がある。
これらの異なるCNNタイプを比較して、それらの長所と短所を理解するためには、徹底的な理解を得ることが重要です。
- 参考スコア(独自算出の注目度): 5.76466022747257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's digital age, Convolutional Neural Networks (CNNs), a subset of
Deep Learning (DL), are widely used for various computer vision tasks such as
image classification, object detection, and image segmentation. There are
numerous types of CNNs designed to meet specific needs and requirements,
including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention,
depthwise convolutions, and NAS, among others. Each type of CNN has its unique
structure and characteristics, making it suitable for specific tasks. It's
crucial to gain a thorough understanding and perform a comparative analysis of
these different CNN types to understand their strengths and weaknesses.
Furthermore, studying the performance, limitations, and practical applications
of each type of CNN can aid in the development of new and improved
architectures in the future. We also dive into the platforms and frameworks
that researchers utilize for their research or development from various
perspectives. Additionally, we explore the main research fields of CNN like 6D
vision, generative models, and meta-learning. This survey paper provides a
comprehensive examination and comparison of various CNN architectures,
highlighting their architectural differences and emphasizing their respective
advantages, disadvantages, applications, challenges, and future trends.
- Abstract(参考訳): 今日のデジタル時代において、ディープラーニング(DL)のサブセットである畳み込みニューラルネットワーク(CNN)は、画像分類、オブジェクト検出、イメージセグメンテーションといった様々なコンピュータビジョンタスクに広く利用されている。
1D、2D、3D CNN、拡張、グループ化、注目、深みのある畳み込み、NASなど、特定のニーズと要求を満たすように設計されたCNNには、数多くの種類がある。
それぞれのタイプのcnnは独特の構造と特性を持ち、特定のタスクに適している。
強みと弱みを理解するために、これらの異なるcnnタイプの詳細な理解と比較分析を行うことが重要です。
さらに、各タイプのCNNの性能、限界、実用性についての研究は、将来新しい改良されたアーキテクチャの開発に役立てることができる。
また、研究者がさまざまな観点から研究や開発に利用するプラットフォームやフレームワークにも目を向けます。
さらに,CNNの6次元視覚,生成モデル,メタラーニングといった研究分野についても検討する。
本稿では,CNNアーキテクチャの総合的な検討と比較を行い,アーキテクチャの違いを強調し,それぞれのメリット,デメリット,アプリケーション,課題,今後の動向を強調する。
関連論文リスト
- Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
本稿では,大規模な空間問題に対する畳み込みニューラルネットワーク(CNN)の効率的なトレーニングのための新しいフレームワークを提案する。
このような信号の小さなウィンドウで訓練されたCNNは、再学習することなく、はるかに大きなウィンドウでほぼ性能を発揮することを示す。
以上の結果から,CNNは10人未満の訓練を受けた後,数百人のエージェントによる問題に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T13:51:45Z) - A novel feature-scrambling approach reveals the capacity of
convolutional neural networks to learn spatial relations [0.0]
畳み込みニューラルネットワーク(CNN)は、物体認識を解く最も成功したコンピュータビジョンシステムの一つである。
しかし、CNNが実際にどのように決断を下すのか、内部表現の性質や認識戦略が人間とどのように異なるのかは、いまだに理解されていない。
論文 参考訳(メタデータ) (2022-12-12T16:40:29Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Assessing learned features of Deep Learning applied to EEG [0.0]
生の脳波データに基づいて訓練されたCNNから脳波関連特徴を抽出するために3つの異なる手法を用いる。
我々は,CNNモデルの可視化により,興味深い脳波結果が得られることを示した。
論文 参考訳(メタデータ) (2021-11-08T07:43:40Z) - Receptive Field Regularization Techniques for Audio Classification and
Tagging with Deep Convolutional Neural Networks [7.9495796547433395]
CNNの受容場(RF)のチューニングは,その一般化に不可欠であることを示す。
我々は,CNNのRFを制御し,結果のアーキテクチャを体系的にテストする,いくつかの系統的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-26T08:36:29Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - PCLs: Geometry-aware Neural Reconstruction of 3D Pose with Perspective
Crop Layers [111.55817466296402]
我々は、カメラ幾何学に基づく関心領域の視点作物であるパースペクティブ・クロップ・レイヤ(PCL)を紹介する。
PCLは、エンドツーエンドのトレーニングと基礎となるニューラルネットワークのパラメータ数を残しながら、位置依存的な視点効果を決定論的に除去する。
PCLは、既存の3D再構成ネットワークを幾何学的に認識することで、容易に精度を向上させる手段を提供する。
論文 参考訳(メタデータ) (2020-11-27T08:48:43Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
CNNモデルから抽出可能なデータを整理するデータモデルを提案する。
次に、異なる状況下でエントロピーを計算する2つの方法を提案する。
我々は,モデル内の情報変化量をインタラクティブに探索する視覚解析システムCNNSlicerを開発した。
論文 参考訳(メタデータ) (2020-05-02T21:36:50Z) - CNN Explainer: Learning Convolutional Neural Networks with Interactive
Visualization [23.369550871258543]
CNN Explainerは、非専門家が畳み込みニューラルネットワーク(CNN)を学習し、検証するために設計されたインタラクティブな可視化ツールである。
我々のツールは、CNNについて学びながら初心者が直面する重要な課題に対処し、インストラクターへのインタビューや過去の学生に対する調査から識別する。
CNN Explainerは、ユーザがCNNの内部動作をより理解しやすくし、興味深く、使いやすくする。
論文 参考訳(メタデータ) (2020-04-30T17:49:44Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。