Bagged Deep Image Prior for Recovering Images in the Presence of Speckle
Noise
- URL: http://arxiv.org/abs/2402.15635v1
- Date: Fri, 23 Feb 2024 22:36:07 GMT
- Title: Bagged Deep Image Prior for Recovering Images in the Presence of Speckle
Noise
- Authors: Xi Chen, Zhewen Hou, Christopher A. Metzler, Arian Maleki and Shirin
Jalali
- Abstract summary: We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements.
Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis.
On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent.
- Score: 22.436469596741002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate both the theoretical and algorithmic aspects of
likelihood-based methods for recovering a complex-valued signal from multiple
sets of measurements, referred to as looks, affected by speckle
(multiplicative) noise. Our theoretical contributions include establishing the
first existing theoretical upper bound on the Mean Squared Error (MSE) of the
maximum likelihood estimator under the deep image prior hypothesis. Our
theoretical results capture the dependence of MSE upon the number of parameters
in the deep image prior, the number of looks, the signal dimension, and the
number of measurements per look. On the algorithmic side, we introduce the
concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with
projected gradient descent. Furthermore, we show how employing Newton-Schulz
algorithm for calculating matrix inverses within the iterations of PGD reduces
the computational complexity of the algorithm. We will show that this method
achieves the state-of-the-art performance.
Related papers
- Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - Quantum annealing-based computed tomography using variational approach
for a real-number image reconstruction [0.0]
The study developed the QACT reconstruction algorithm using the variational approach for real-number reconstruction.
Remarkably, only 2 qubits were required for each pixel representation, demonstrating their sufficiency for accurate reconstruction.
arXiv Detail & Related papers (2023-06-03T23:35:10Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded aperture snapshot spectral imaging (CASSI) is a technique used to reconstruct three-dimensional hyperspectral images (HSIs)
This paper proposes a fast alternating minimization algorithm based on the sparsity and deep image priors (Fama-P) of natural images.
arXiv Detail & Related papers (2022-06-12T03:29:14Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
arXiv Detail & Related papers (2021-08-18T17:57:02Z) - On Measuring and Controlling the Spectral Bias of the Deep Image Prior [63.88575598930554]
The deep image prior has demonstrated the remarkable ability that untrained networks can address inverse imaging problems.
It requires an oracle to determine when to stop the optimization as the performance degrades after reaching a peak.
We study the deep image prior from a spectral bias perspective to address these problems.
arXiv Detail & Related papers (2021-07-02T15:10:42Z) - Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie [13.476505672245603]
This paper develops theory, methods, and provably convergent algorithms for performing Bayesian inference with priors.
We introduce two algorithms: 1) -ULA (Unadjusted Langevin) Algorithm inference for Monte Carlo sampling and MMSE; and 2) quantitative-SGD (Stochastic Gradient Descent) for inference.
The algorithms are demonstrated on several problems such as image denoisering, inpainting, and denoising, where they are used for point estimation as well as for uncertainty visualisation and regularity.
arXiv Detail & Related papers (2021-03-08T12:46:53Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
We propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network.
We show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters.
arXiv Detail & Related papers (2020-12-07T09:27:16Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
The problem arises in various imaging modalities such as Fourier ptychography, X-ray crystallography, and in visible light communication.
We propose to solve this inverse problem using alternating gradient descent algorithm under two pretrained deep generative networks as priors.
The proposed recovery algorithm strives to find a sharp image and a blur kernel in the range of the respective pre-generators that textitbest explain the forward measurement model.
arXiv Detail & Related papers (2020-02-28T07:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.