Fair Resource Allocation in Multi-Task Learning
- URL: http://arxiv.org/abs/2402.15638v2
- Date: Tue, 2 Jul 2024 02:09:32 GMT
- Title: Fair Resource Allocation in Multi-Task Learning
- Authors: Hao Ban, Kaiyi Ji,
- Abstract summary: Multi-task learning (MTL) can leverage the shared knowledge across tasks, resulting in improved data efficiency and generalization performance.
A major challenge in MTL lies in the presence of conflicting gradients, which can hinder the fair optimization of some tasks.
Inspired by fair resource allocation in communication networks, we propose FairGrad, a novel MTL optimization method.
- Score: 12.776767874217663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By jointly learning multiple tasks, multi-task learning (MTL) can leverage the shared knowledge across tasks, resulting in improved data efficiency and generalization performance. However, a major challenge in MTL lies in the presence of conflicting gradients, which can hinder the fair optimization of some tasks and subsequently impede MTL's ability to achieve better overall performance. Inspired by fair resource allocation in communication networks, we formulate the optimization of MTL as a utility maximization problem, where the loss decreases across tasks are maximized under different fairness measurements. To solve this problem, we propose FairGrad, a novel MTL optimization method. FairGrad not only enables flexible emphasis on certain tasks but also achieves a theoretical convergence guarantee. Extensive experiments demonstrate that our method can achieve state-of-the-art performance among gradient manipulation methods on a suite of multi-task benchmarks in supervised learning and reinforcement learning. Furthermore, we incorporate the idea of $\alpha$-fairness into loss functions of various MTL methods. Extensive empirical studies demonstrate that their performance can be significantly enhanced. Code is provided at \url{https://github.com/OptMN-Lab/fairgrad}.
Related papers
- Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Equitable Multi-task Learning [18.65048321820911]
Multi-task learning (MTL) has achieved great success in various research domains, such as CV, NLP and IR.
We propose a novel multi-task optimization method, named EMTL, to achieve equitable MTL.
Our method stably outperforms state-of-the-art methods on the public benchmark datasets of two different research domains.
arXiv Detail & Related papers (2023-06-15T03:37:23Z) - Improving Multi-task Learning via Seeking Task-based Flat Regions [38.28600737969538]
Multi-Task Learning (MTL) is a powerful learning paradigm for training deep neural networks that allows learning more than one objective by a single backbone.
There is an emerging line of work in MTL that focuses on manipulating the task gradient to derive an ultimate gradient descent direction.
We propose to leverage a recently introduced training method, named Sharpness-aware Minimization, which can enhance model generalization ability on single-task learning.
arXiv Detail & Related papers (2022-11-24T17:19:30Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
Multi-task learning (MTL) is a subfield of machine learning with important applications.
The best MTL optimization methods require individually computing the gradient of each task's loss function.
We propose Scaled Loss Approximate Weighting (SLAW), a method for multi-task optimization that matches the performance of the best existing methods while being much more efficient.
arXiv Detail & Related papers (2021-09-16T20:58:40Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.