Privacy-Preserving State Estimation in the Presence of Eavesdroppers: A Survey
- URL: http://arxiv.org/abs/2402.15738v1
- Date: Sat, 24 Feb 2024 06:32:07 GMT
- Title: Privacy-Preserving State Estimation in the Presence of Eavesdroppers: A Survey
- Authors: Xinhao Yan, Guanzhong Zhou, Daniel E. Quevedo, Carlos Murguia, Bo Chen, Hailong Huang,
- Abstract summary: Networked systems are increasingly the target of cyberattacks.
Eavesdropping attacks aim to infer information by collecting system data and exploiting it for malicious purposes.
It is crucial to protect disclosed system data to avoid an accurate state estimation by eavesdroppers.
- Score: 10.366696004684822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networked systems are increasingly the target of cyberattacks that exploit vulnerabilities within digital communications, embedded hardware, and software. Arguably, the simplest class of attacks -- and often the first type before launching destructive integrity attacks -- are eavesdropping attacks, which aim to infer information by collecting system data and exploiting it for malicious purposes. A key technology of networked systems is state estimation, which leverages sensing and actuation data and first-principles models to enable trajectory planning, real-time monitoring, and control. However, state estimation can also be exploited by eavesdroppers to identify models and reconstruct states with the aim of, e.g., launching integrity (stealthy) attacks and inferring sensitive information. It is therefore crucial to protect disclosed system data to avoid an accurate state estimation by eavesdroppers. This survey presents a comprehensive review of existing literature on privacy-preserving state estimation methods, while also identifying potential limitations and research gaps. Our primary focus revolves around three types of methods: cryptography, data perturbation, and transmission scheduling, with particular emphasis on Kalman-like filters. Within these categories, we delve into the concepts of homomorphic encryption and differential privacy, which have been extensively investigated in recent years in the context of privacy-preserving state estimation. Finally, we shed light on several technical and fundamental challenges surrounding current methods and propose potential directions for future research.
Related papers
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - A Survey and Evaluation of Adversarial Attacks for Object Detection [11.48212060875543]
Deep learning models excel in various computer vision tasks but are susceptible to adversarial examples-subtle perturbations in input data that lead to incorrect predictions.
This vulnerability poses significant risks in safety-critical applications such as autonomous vehicles, security surveillance, and aircraft health monitoring.
arXiv Detail & Related papers (2024-08-04T05:22:08Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
This paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC.
We put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies.
To adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD.
arXiv Detail & Related papers (2023-04-07T13:43:57Z) - It Is All About Data: A Survey on the Effects of Data on Adversarial
Robustness [4.1310970179750015]
Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to confuse the model into making a mistake.
To address this problem, the area of adversarial robustness investigates mechanisms behind adversarial attacks and defenses against these attacks.
arXiv Detail & Related papers (2023-03-17T04:18:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.