DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
- URL: http://arxiv.org/abs/2507.05622v1
- Date: Tue, 08 Jul 2025 03:07:15 GMT
- Title: DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
- Authors: Shuo Shao, Yiming Li, Mengren Zheng, Zhiyang Hu, Yukun Chen, Boheng Li, Yu He, Junfeng Guo, Tianwei Zhang, Dacheng Tao, Zhan Qin,
- Abstract summary: We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
- Score: 59.66984417026933
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The widespread application of Deep Learning across diverse domains hinges critically on the quality and composition of training datasets. However, the common lack of disclosure regarding their usage raises significant privacy and copyright concerns. Dataset auditing techniques, which aim to determine if a specific dataset was used to train a given suspicious model, provide promising solutions to addressing these transparency gaps. While prior work has developed various auditing methods, their resilience against dedicated adversarial attacks remains largely unexplored. To bridge the gap, this paper initiates a comprehensive study evaluating dataset auditing from an adversarial perspective. We start with introducing a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing). Subsequently, we formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset. Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery. These formulations and strategies lead to our new benchmark, DATABench, comprising 17 evasion attacks, 5 forgery attacks, and 9 representative auditing methods. Extensive evaluations using DATABench reveal that none of the evaluated auditing methods are sufficiently robust or distinctive under adversarial settings. These findings underscore the urgent need for developing a more secure and reliable dataset auditing method capable of withstanding sophisticated adversarial manipulation. Code is available at https://github.com/shaoshuo-ss/DATABench.
Related papers
- Addressing Key Challenges of Adversarial Attacks and Defenses in the Tabular Domain: A Methodological Framework for Coherence and Consistency [26.645723217188323]
Class-Specific Anomaly Detection (CSAD) is an effective novel anomaly detection approach.<n> CSAD evaluates adversarial samples relative to their predicted class distribution, rather than a broad benign distribution.<n>Our evaluation incorporates both anomaly detection rates with SHAP-based assessments to provide a more comprehensive measure of adversarial sample quality.
arXiv Detail & Related papers (2024-12-10T09:17:09Z) - Hide in Plain Sight: Clean-Label Backdoor for Auditing Membership Inference [16.893873979953593]
We propose a novel clean-label backdoor-based approach for stealthy data auditing.
Our approach employs an optimal trigger generated by a shadow model that mimics target model's behavior.
The proposed method enables robust data auditing through blackbox access, achieving high attack success rates across diverse datasets.
arXiv Detail & Related papers (2024-11-24T20:56:18Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.<n>Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.<n>This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - DAD++: Improved Data-free Test Time Adversarial Defense [12.606555446261668]
We propose a test time Data-free Adversarial Defense (DAD) containing detection and correction frameworks.
We conduct a wide range of experiments and ablations on several datasets and network architectures to show the efficacy of our proposed approach.
Our DAD++ gives an impressive performance against various adversarial attacks with a minimal drop in clean accuracy.
arXiv Detail & Related papers (2023-09-10T20:39:53Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
Membership inference attacks are used to quantify the private information that a model leaks about the individual data points in its training set.
We derive new attack algorithms that can achieve a high AUC score while also highlighting the different factors that affect their performance.
Our algorithms capture a very precise approximation of privacy loss in models, and can be used as a tool to perform an accurate and informed estimation of privacy risk in machine learning models.
arXiv Detail & Related papers (2021-11-18T13:31:22Z) - Gradient-based Data Subversion Attack Against Binary Classifiers [9.414651358362391]
In this work, we focus on label contamination attack in which an attacker poisons the labels of data to compromise the functionality of the system.
We exploit the gradients of a differentiable convex loss function with respect to the predicted label as a warm-start and formulate different strategies to find a set of data instances to contaminate.
Our experiments show that the proposed approach outperforms the baselines and is computationally efficient.
arXiv Detail & Related papers (2021-05-31T09:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.