Traditional Transformation Theory Guided Model for Learned Image
Compression
- URL: http://arxiv.org/abs/2402.15744v1
- Date: Sat, 24 Feb 2024 06:54:29 GMT
- Title: Traditional Transformation Theory Guided Model for Learned Image
Compression
- Authors: Zhiyuan Li, Chenyang Ge, Shun Li
- Abstract summary: We propose ultra lows enhanced invertible encoding network guided by traditional transformation theory.
Experiments show that our methods outperforms existing methods in both compression and reconstruction performance.
- Score: 10.914558012458425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many deep image compression methods have been proposed and achieved
remarkable performance. However, these methods are dedicated to optimizing the
compression performance and speed at medium and high bitrates, while research
on ultra low bitrates is limited. In this work, we propose a ultra low bitrates
enhanced invertible encoding network guided by traditional transformation
theory, experiments show that our codec outperforms existing methods in both
compression and reconstruction performance. Specifically, we introduce the
Block Discrete Cosine Transformation to model the sparsity of features and
employ traditional Haar transformation to improve the reconstruction
performance of the model without increasing the bitstream cost.
Related papers
- Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
This paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression.
A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization.
Experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception.
arXiv Detail & Related papers (2024-03-06T14:27:02Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
We show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
In this paper, we show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
arXiv Detail & Related papers (2024-03-05T11:48:35Z) - A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
We study the robustness of learned image compression models against adversarial attacks.
We present a training-free defense technique based on simple image transform functions.
arXiv Detail & Related papers (2024-01-22T12:50:21Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Improving The Reconstruction Quality by Overfitted Decoder Bias in
Neural Image Compression [3.058685580689605]
We propose an instance-based fine-tuning of a subset of decoder's bias to improve the reconstruction quality in exchange for extra encoding time and minor additional signaling cost.
The proposed method is applicable to any end-to-end compression methods, improving the state-of-the-art neural image compression BD-rate by $3-5%$.
arXiv Detail & Related papers (2022-10-10T08:14:01Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images.
We propose a simple yet efficient instance-based parameterization method to reduce this amortization gap at a minor cost.
arXiv Detail & Related papers (2022-09-02T11:43:45Z) - ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding [9.908820641439368]
We propose an efficient model, ELIC, to achieve state-of-the-art speed and compression ability.
With superior performance, the proposed model also supports extremely fast preview decoding and progressive decoding.
arXiv Detail & Related papers (2022-03-21T11:19:50Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.