Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder
- URL: http://arxiv.org/abs/2201.11795v2
- Date: Mon, 31 Jan 2022 05:16:43 GMT
- Title: Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder
- Authors: Ankur Mali and Alexander Ororbia and Daniel Kifer and Lee Giles
- Abstract summary: We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
- Score: 73.48927855855219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have led to superhuman performance across a
variety of applications. Recently, these methods have been successfully
employed to improve the rate-distortion performance in the task of image
compression. However, current methods either use additional post-processing
blocks on the decoder end to improve compression or propose an end-to-end
compression scheme based on heuristics. For the majority of these, the trained
deep neural networks (DNNs) are not compatible with standard encoders and would
be difficult to deply on personal computers and cellphones. In light of this,
we propose a system that learns to improve the encoding performance by
enhancing its internal neural representations on both the encoder and decoder
ends, an approach we call Neural JPEG. We propose frequency domain pre-editing
and post-editing methods to optimize the distribution of the DCT coefficients
at both encoder and decoder ends in order to improve the standard compression
(JPEG) method. Moreover, we design and integrate a scheme for jointly learning
quantization tables within this hybrid neural compression framework.Experiments
demonstrate that our approach successfully improves the rate-distortion
performance over JPEG across various quality metrics, such as PSNR and MS-SSIM,
and generates visually appealing images with better color retention quality.
Related papers
- JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - JND-Based Perceptual Optimization For Learned Image Compression [42.822121565430926]
We propose a JND-based perceptual quality loss for learned image compression schemes.
We show that the proposed method has led to better perceptual quality than the baseline model under the same bit rate.
arXiv Detail & Related papers (2023-02-25T14:49:09Z) - Learned Lossless JPEG Transcoding via Joint Lossy and Residual
Compression [21.205453851414248]
We propose a new framework to recompress the compressed JPEG image in the DCT domain.
Our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
Our experiments on multiple datasets have demonstrated that our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
arXiv Detail & Related papers (2022-08-24T17:12:00Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.