Analysis of Off-Policy Multi-Step TD-Learning with Linear Function Approximation
- URL: http://arxiv.org/abs/2402.15781v2
- Date: Mon, 8 Apr 2024 17:45:28 GMT
- Title: Analysis of Off-Policy Multi-Step TD-Learning with Linear Function Approximation
- Authors: Donghwan Lee,
- Abstract summary: This paper analyzes multi-step TD-learning algorithms characterized by linear function approximation, off-policy learning, and bootstrapping.
Two n-step TD-learning algorithms are proposed and analyzed, which can be seen as the model-free reinforcement learning counterparts of the gradient and control theoretic algorithms.
- Score: 5.152147416671501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes multi-step TD-learning algorithms within the `deadly triad' scenario, characterized by linear function approximation, off-policy learning, and bootstrapping. In particular, we prove that n-step TD-learning algorithms converge to a solution as the sampling horizon n increases sufficiently. The paper is divided into two parts. In the first part, we comprehensively examine the fundamental properties of their model-based deterministic counterparts, including projected value iteration, gradient descent algorithms, and the control theoretic approach, which can be viewed as prototype deterministic algorithms whose analysis plays a pivotal role in understanding and developing their model-free reinforcement learning counterparts. In particular, we prove that these algorithms converge to meaningful solutions when n is sufficiently large. Based on these findings, two n-step TD-learning algorithms are proposed and analyzed, which can be seen as the model-free reinforcement learning counterparts of the gradient and control theoretic algorithms.
Related papers
- Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Reinforcement Learning with Unbiased Policy Evaluation and Linear
Function Approximation [11.345796608258434]
We provide performance guarantees for a variant of simulation-based policy iteration for controlling Markov decision processes.
We analyze two algorithms; the first algorithm involves a least squares approach where a new set of weights associated with feature vectors is obtained via at least squares at each iteration.
The second algorithm involves a two-time-scale approximation algorithm taking several steps of gradient descent towards the least squares solution.
arXiv Detail & Related papers (2022-10-13T20:16:19Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Learning-to-learn non-convex piecewise-Lipschitz functions [44.6133187924678]
We analyze the meta-learning of the algorithms for piecewise-Lipschitz functions, a non-task with applications to both machine learning algorithms.
We propose a practical meta-learning procedure that learns both the step-size of the algorithm from multiple online learning tasks.
arXiv Detail & Related papers (2021-08-19T16:22:48Z) - Proximal Gradient Temporal Difference Learning: Stable Reinforcement
Learning with Polynomial Sample Complexity [40.73281056650241]
We introduce proximal gradient temporal difference learning, which provides a principled way of designing and analyzing true gradient temporal difference learning algorithms.
We show how gradient TD reinforcement learning methods can be formally derived, not by starting from their original objective functions, as previously attempted, but rather from a primal-dual saddle-point objective function.
arXiv Detail & Related papers (2020-06-06T21:04:21Z) - Finite-Sample Analysis of Proximal Gradient TD Algorithms [43.035055641190105]
We analyze the convergence rate of the gradient temporal difference learning (GTD) family of algorithms.
Two revised algorithms are also proposed, namely projected GTD2 and GTD2-MP.
The results of our theoretical analysis show that the GTD family of algorithms are indeed comparable to the existing LSTD methods in off-policy learning scenarios.
arXiv Detail & Related papers (2020-06-06T20:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.