A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks
- URL: http://arxiv.org/abs/2402.15984v2
- Date: Thu, 18 Apr 2024 19:10:58 GMT
- Title: A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks
- Authors: Sho Sonoda, Isao Ishikawa, Masahiro Ikeda,
- Abstract summary: The ridgelet transform is a pseudo-inverse operator that maps a given function $f$ to the parameter distribution $gamma$.
For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression.
We derive transforms for a variety of modern networks such as networks on finite fields $mathbbF_p$, group convolutional networks on abstract Hilbert space $mathcalH$, fully-connected networks on noncompact symmetric spaces $G/K$, and pooling layers.
- Score: 14.45619075342763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function $f$ to the parameter distribution $\gamma$ so that a network $\mathtt{NN}[\gamma]$ reproduces $f$, i.e. $\mathtt{NN}[\gamma]=f$. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields $\mathbb{F}_p$, group convolutional networks on abstract Hilbert space $\mathcal{H}$, fully-connected networks on noncompact symmetric spaces $G/K$, and pooling layers, or the $d$-plane ridgelet transform.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Fourier Circuits in Neural Networks and Transformers: A Case Study of Modular Arithmetic with Multiple Inputs [35.212818841550835]
One-hidden layer neural networks and one-layer Transformers are studied.
One-hidden layer neural networks attain a maximum $ L_2,k+1 $-margin on a dataset.
We observe similar computational mechanisms in attention of one-layer Transformers.
arXiv Detail & Related papers (2024-02-12T05:52:06Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - Shallow neural network representation of polynomials [91.3755431537592]
We show that $d$-variables of degreeR$ can be represented on $[0,1]d$ as shallow neural networks of width $d+1+sum_r=2Rbinomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1d-1[binomr+d-1d-1d-1d-1
arXiv Detail & Related papers (2022-08-17T08:14:52Z) - Universality of group convolutional neural networks based on ridgelet
analysis on groups [10.05944106581306]
We investigate the approximation property of group convolutional neural networks (GCNNs) based on the ridgelet theory.
We formulate a versatile GCNN as a nonlinear mapping between group representations.
arXiv Detail & Related papers (2022-05-30T02:52:22Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Function approximation by deep neural networks with parameters $\{0,\pm
\frac{1}{2}, \pm 1, 2\}$ [91.3755431537592]
It is shown that $C_beta$-smooth functions can be approximated by neural networks with parameters $0,pm frac12, pm 1, 2$.
The depth, width and the number of active parameters of constructed networks have, up to a logarithimc factor, the same dependence on the approximation error as the networks with parameters in $[-1,1]$.
arXiv Detail & Related papers (2021-03-15T19:10:02Z) - Sample Complexity and Overparameterization Bounds for Projection-Free
Neural TD Learning [38.730333068555275]
Existing analysis of neural TD learning relies on either infinite width-analysis or constraining the network parameters in a (random) compact set.
We show that the projection-free TD learning equipped with a two-layer ReLU network of any width exceeding $poly(overlinenu,1/epsilon)$ converges to the true value function with error $epsilon$ given $poly(overlinenu,1/epsilon)$ iterations or samples.
arXiv Detail & Related papers (2021-03-02T01:05:19Z) - On the Banach spaces associated with multi-layer ReLU networks: Function
representation, approximation theory and gradient descent dynamics [8.160343645537106]
We develop Banach spaces for ReLU neural networks of finite depth $L$ and infinite width.
The spaces contain all finite fully connected $L$-layer networks and their $L2$-limiting objects under on the natural path-norm.
Under this norm, the unit ball in the space for $L$-layer networks has low Rademacher complexity and thus favorable properties.
arXiv Detail & Related papers (2020-07-30T17:47:05Z) - Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
Optimization Formulations for Two-layer Networks [70.15611146583068]
We develop exact representations of training two-layer neural networks with rectified linear units (ReLUs)
Our theory utilizes semi-infinite duality and minimum norm regularization.
arXiv Detail & Related papers (2020-02-24T21:32:41Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
We develop a corrective mechanism for neural network approximation.
We show that two-layer neural networks in the random features regime (RF) can memorize arbitrary labels.
We also consider three-layer neural networks and show that the corrective mechanism yields faster representation rates for smooth radial functions.
arXiv Detail & Related papers (2020-02-01T20:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.