論文の概要: Citation-Enhanced Generation for LLM-based Chatbot
- arxiv url: http://arxiv.org/abs/2402.16063v1
- Date: Sun, 25 Feb 2024 11:24:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 15:34:20.218000
- Title: Citation-Enhanced Generation for LLM-based Chatbot
- Title(参考訳): LLM型チャットボットのCitation-Enhanced Generation
- Authors: Weitao Li, Junkai Li, Weizhi Ma, Yang Liu
- Abstract要約: 大規模言語モデル(LLM)は多様なシナリオにまたがる強力な汎用知性を示す。
幻覚コンテンツは反応で生成され、適用性が著しく制限される。
ポストホック後のtextbfCitation-textbfEnhanced textbfGeneration (textbfCEG) アプローチを提案する。
- 参考スコア(独自算出の注目度): 11.973280288131225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit powerful general intelligence across
diverse scenarios, including their integration into chatbots. However, a vital
challenge of LLM-based chatbots is that they may produce hallucinated content
in responses, which significantly limits their applicability. Various efforts
have been made to alleviate hallucination, such as retrieval augmented
generation and reinforcement learning with human feedback, but most of them
require additional training and data annotation. In this paper, we propose a
novel post-hoc \textbf{C}itation-\textbf{E}nhanced \textbf{G}eneration
(\textbf{CEG}) approach combined with retrieval argumentation. Unlike previous
studies that focus on preventing hallucinations during generation, our method
addresses this issue in a post-hoc way. It incorporates a retrieval module to
search for supporting documents relevant to the generated content, and employs
a natural language inference-based citation generation module. Once the
statements in the generated content lack of reference, our model can regenerate
responses until all statements are supported by citations. Note that our method
is a training-free plug-and-play plugin that is capable of various LLMs.
Experiments on various hallucination-related datasets show our framework
outperforms state-of-the-art methods in both hallucination detection and
response regeneration on three benchmarks. Our codes and dataset will be
publicly available.
- Abstract(参考訳): 大規模言語モデル(llm)は、チャットボットへの統合など、さまざまなシナリオにわたる強力な汎用知性を示す。
しかし、LLMベースのチャットボットにとって重要な課題は、応答中に幻覚的コンテンツを生成できるため、適用性が著しく制限されることである。
検索拡張生成や人間フィードバックによる強化学習など幻覚を緩和するために様々な努力がなされているが、そのほとんどは追加のトレーニングとデータアノテーションを必要とする。
本稿では,新しいポストホックな \textbf{C}itation-\textbf{E}nhanced \textbf{G}eneration (\textbf{CEG}) アプローチと検索引数を組み合わせて提案する。
世代ごとの幻覚の予防に焦点を当てた従来の研究とは異なり,本手法はポストホック方式でこの問題に対処する。
生成したコンテンツに関連する文書を検索するための検索モジュールを組み込んでおり、自然言語推論に基づく引用生成モジュールを採用している。
生成されたコンテンツ内のステートメントが参照を欠くと、私たちのモデルは全てのステートメントが引用によってサポートされるまでレスポンスを再生できます。
本手法は様々なllmが可能なトレーニングフリーなプラグインである。
種々の幻覚関連データセットを用いた実験により、3つのベンチマークによる幻覚検出と応答再生の両方において、我々のフレームワークは最先端の手法よりも優れていた。
コードとデータセットは公開されます。
関連論文リスト
- LargePiG: Your Large Language Model is Secretly a Pointer Generator [15.248956952849259]
本稿では,Large Language Models (LLMs) に基づく問合せ生成による幻覚問題の新しいタイプとして,関連性幻覚と事実性幻覚を導入する。
LLM生成クエリの形式からコンテンツを切り離す効果的な方法を提案し、入力から抽出・統合された事実知識を保存し、LLMの強力な言語機能を用いて関数語を含む構文構造をコンパイルする。
論文 参考訳(メタデータ) (2024-10-15T07:41:40Z) - On the Capacity of Citation Generation by Large Language Models [38.47160164251295]
Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)における「ハロシン化」問題を緩和するための有望な方法として現れる。
論文 参考訳(メタデータ) (2024-10-15T03:04:26Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA (LongHalQA) は、6Kの長い複雑な幻覚テキストからなるLLMフリー幻覚ベンチマークである。
LongHalQA は GPT4V の生成した幻覚データによって特徴付けられる。
論文 参考訳(メタデータ) (2024-10-13T18:59:58Z) - Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
幻覚は、言語モデルがそのパラメトリック知識の外で生成タスクが与えられるときに起こる。
この制限に対処するための一般的な戦略は、言語モデルに検索メカニズムを注入することである。
我々は,幻覚の頻度をさらに減少させるために,探索のガイドとして計画をどのように利用できるかを分析する。
論文 参考訳(メタデータ) (2024-08-20T02:19:35Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
大きな言語モデル(LLM)は、人間のようなテキストを書く能力の進歩を続けている。
重要な課題は、事実に見えるが根拠のないコンテンツを生み出すことを幻覚させる傾向にある。
本稿では,LLMにおける幻覚を緩和するために開発された32以上の技術について調査する。
論文 参考訳(メタデータ) (2024-01-02T17:56:30Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Trapping LLM Hallucinations Using Tagged Context Prompts [11.655802601887197]
本稿では,大規模言語モデルがドメイン知識の外部で実行された場合に,インスタンスを認識・フラグする新しい手法を提案する。
組込みタグと組み合わされたコンテキストを用いることで,生成言語モデル内の幻覚に対処できることが判明した。
論文 参考訳(メタデータ) (2023-06-09T17:48:54Z) - Active Retrieval Augmented Generation [123.68874416084499]
外部知識資源から情報を取得することで、大きな言語モデル(LM)を拡張することは、有望な解決策である。
ほとんどの既存の検索拡張LMは、入力に基づいて一度だけ情報を検索する検索と生成のセットアップを採用している。
本稿では,将来的な内容を予測するために,文の予測を反復的に利用する汎用手法であるフォワード・フォワード・アクティブ・レトリヴァル・ジェネレーション・ジェネレーション(FLARE)を提案する。
論文 参考訳(メタデータ) (2023-05-11T17:13:40Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - A Token-level Reference-free Hallucination Detection Benchmark for
Free-form Text Generation [50.55448707570669]
本稿ではトークンレベルの参照なし幻覚検出タスクとHaDesというアノテーション付きデータセットを提案する。
このデータセットを作成するために、まず英語のウィキペディアから抽出された大量のテキストセグメントを摂り込み、それからクラウドソースアノテーションで検証する。
論文 参考訳(メタデータ) (2021-04-18T04:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。