論文の概要: StochCA: A Novel Approach for Exploiting Pretrained Models with Cross-Attention
- arxiv url: http://arxiv.org/abs/2402.16092v2
- Date: Sun, 29 Sep 2024 03:57:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:45.173852
- Title: StochCA: A Novel Approach for Exploiting Pretrained Models with Cross-Attention
- Title(参考訳): StochCA: クロスアテンションで事前訓練されたモデルをエクスプロイトするための新しいアプローチ
- Authors: Seungwon Seo, Suho Lee, Sangheum Hwang,
- Abstract要約: トランスフォーマーアーキテクチャに特有なクロスアテンション(StochCA)と呼ばれる新しい微調整手法を提案する。
この方法はトランスフォーマーの自己保持機構を変更し、微調整中に事前学習したモデルからの知識を選択的に活用する。
両領域の最先端アプローチに対するStochCAの優位性について検討した。
- 参考スコア(独自算出の注目度): 2.66269503676104
- License:
- Abstract: Utilizing large-scale pretrained models is a well-known strategy to enhance performance on various target tasks. It is typically achieved through fine-tuning pretrained models on target tasks. However, na\"{\i}ve fine-tuning may not fully leverage knowledge embedded in pretrained models. In this study, we introduce a novel fine-tuning method, called stochastic cross-attention (StochCA), specific to Transformer architectures. This method modifies the Transformer's self-attention mechanism to selectively utilize knowledge from pretrained models during fine-tuning. Specifically, in each block, instead of self-attention, cross-attention is performed stochastically according to the predefined probability, where keys and values are extracted from the corresponding block of a pretrained model. By doing so, queries and channel-mixing multi-layer perceptron layers of a target model are fine-tuned to target tasks to learn how to effectively exploit rich representations of pretrained models. To verify the effectiveness of StochCA, extensive experiments are conducted on benchmarks in the areas of transfer learning and domain generalization, where the exploitation of pretrained models is critical. Our experimental results show the superiority of StochCA over state-of-the-art approaches in both areas. Furthermore, we demonstrate that StochCA is complementary to existing approaches, i.e., it can be combined with them to further improve performance. Our code is available at https://github.com/daintlab/stochastic_cross_attention
- Abstract(参考訳): 大規模事前訓練モデルを活用することは、様々な目標タスクの性能を高めるためのよく知られた戦略である。
典型的には、ターゲットタスクの訓練済みモデルを微調整することで達成される。
しかし、na\ "{\i}ve fine-tuning は事前訓練されたモデルに埋め込まれた知識を完全に活用できない可能性がある。
本研究では,トランスフォーマーアーキテクチャに特有な,確率的クロスアテンション(StochCA)と呼ばれる新しい微調整手法を提案する。
この方法はトランスフォーマーの自己保持機構を変更し、微調整中に事前学習したモデルからの知識を選択的に活用する。
具体的には、各ブロックにおいて、自己注意の代わりに、事前訓練されたモデルの対応するブロックからキーと値が抽出される予め定義された確率に応じて、クロスアテンションを確率的に行う。
これにより、ターゲットモデルのクエリとチャネル混合多層パーセプトロン層を微調整してタスクをターゲットにし、事前訓練されたモデルのリッチ表現を効果的に活用する方法を学ぶ。
StochCAの有効性を検証するために、事前学習されたモデルの活用が重要である転写学習とドメイン一般化の分野におけるベンチマークで広範な実験を行った。
両領域の最先端アプローチに対するStochCAの優位性について検討した。
さらに,StochCAは既存のアプローチと相補的であることを示す。
私たちのコードはhttps://github.com/daintlab/stochastic_cross_attentionで利用可能です。
関連論文リスト
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? [50.84738303888189]
本稿では,モデル選択の大規模評価とそのゼロショット一般化への影響について述べる。
私たちは、70億以上のトークンに対して、50億以上のパラメータを持つモデルをトレーニングします。
事前学習した因果デコーダモデルを非因果デコーダモデルに効率的に適用できることが判明した。
論文 参考訳(メタデータ) (2022-04-12T14:19:49Z) - Bridging Pre-trained Models and Downstream Tasks for Source Code
Understanding [13.65914588243695]
本稿では,事前学習されたモデルとコード関連タスクをブリッジする手法を提案する。
我々は、下流データの多様性を豊かにする意味保存変換を利用する。
本稿では,既存の事前学習モデルを微調整するために,変換されたデータを手軽に整理するためのカリキュラム学習を紹介する。
論文 参考訳(メタデータ) (2021-12-04T07:21:28Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
我々は、事前訓練されたモデルからアンサンブルを作成する様々な方法を研究する。
プレトレーニング自体が多様性の優れた源であることが示される。
本稿では,任意の下流データセットに対して,事前学習したモデルのサブセットを効率的に同定する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T07:59:00Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
関連ラベルを「ターゲット語」として生成するためにシーケンス・ツー・シーケンス・モデルをどのように訓練するかを示す。
提案手法は,データポーラ方式におけるエンコーダのみのモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-03-14T22:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。