論文の概要: Towards Automated Knowledge Integration From Human-Interpretable Representations
- arxiv url: http://arxiv.org/abs/2402.16105v5
- Date: Wed, 05 Feb 2025 12:40:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:24:43.377509
- Title: Towards Automated Knowledge Integration From Human-Interpretable Representations
- Title(参考訳): 人間解釈型表現による知識統合の自動化に向けて
- Authors: Katarzyna Kobalczyk, Mihaela van der Schaar,
- Abstract要約: 我々は,情報メタ学習の原理を理論的に導入・動機付けし,自動的かつ制御可能な帰納バイアス選択を可能にする。
データ効率と一般化を改善するための情報メタラーニングのメリットと限界を実証的に示す。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License:
- Abstract: A significant challenge in machine learning, particularly in noisy and low-data environments, lies in effectively incorporating inductive biases to enhance data efficiency and robustness. Despite the success of informed machine learning methods, designing algorithms with explicit inductive biases remains largely a manual process. In this work, we explore how prior knowledge represented in its native formats, e.g. in natural language, can be integrated into machine learning models in an automated manner. Inspired by the learning to learn principles of meta-learning, we consider the approach of learning to integrate knowledge via conditional meta-learning, a paradigm we refer to as informed meta-learning. We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection. To illustrate our claims, we implement an instantiation of informed meta-learning--the Informed Neural Process, and empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
- Abstract(参考訳): 機械学習、特にノイズの多い低データ環境における重要な課題は、データ効率と堅牢性を高めるために、帰納バイアスを効果的に取り入れることである。
知的な機械学習手法の成功にもかかわらず、明示的な帰納的バイアスを持つアルゴリズムを設計することは、ほとんど手作業のままである。
そこで本研究では,自然言語などのネイティブフォーマットで表現された先行知識を,機械学習モデルに自動的に組み込む方法について検討する。
メタラーニングの原則を学ぶための学習にインスパイアされた我々は、条件付きメタラーニングを通じて知識を統合する学習のアプローチを考える。
我々は,情報メタ学習の原理を理論的に導入・動機付けし,自動的かつ制御可能な帰納バイアス選択を可能にする。
そこで我々は,情報メタラーニングの即時化であるインフォームド・ニューラル・プロセス(Informed Neural Process)を実装し,データ効率の向上と一般化における情報メタラーニングのメリットと限界を実証的に実証した。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Advances and Challenges in Meta-Learning: A Technical Review [7.149235250835041]
メタ学習は、複数のタスクから知識を得る能力を持つ学習システムに力を与える。
このレビューは、データの不足や入手コストの低い実世界のアプリケーションにおいて、その重要性を強調している。
論文 参考訳(メタデータ) (2023-07-10T17:32:15Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Learning with Limited Samples -- Meta-Learning and Applications to
Communication Systems [46.760568562468606]
メタ学習は、新しいタスクに迅速に適応できる学習アルゴリズムを最適化する。
このレビュー・モノグラフは、原則、アルゴリズム、理論、工学的応用をカバーし、メタラーニングの紹介を提供する。
論文 参考訳(メタデータ) (2022-10-03T17:15:36Z) - A Metamodel and Framework for Artificial General Intelligence From
Theory to Practice [11.756425327193426]
本稿では,自律学習と適応性を大幅に向上させるメタモデルに基づく知識表現を提案する。
我々は,時系列解析,コンピュータビジョン,自然言語理解といった問題にメタモデルを適用した。
メタモデルの驚くべき結果のひとつは、新たなレベルの自律的な学習と、マシンインテリジェンスのための最適な機能を可能にするだけでなく、それを可能にすることだ。
論文 参考訳(メタデータ) (2021-02-11T16:45:58Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z) - From Learning to Meta-Learning: Reduced Training Overhead and Complexity
for Communication Systems [40.427909614453526]
機械学習手法は、データやアクティブな観察に基づいて、一定の学習手順を用いて、与えられたモデルクラスに置かれるように制約されたモデルのパラメータを適応する。
メタトレーニングによる帰納バイアスでは、トレーニングデータと/または時間の複雑さを減らして、マシンラーニングモデルのトレーニングを実行することができる。
本稿では,メタラーニングの高度導入と通信システムへの応用について述べる。
論文 参考訳(メタデータ) (2020-01-05T12:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。