From Text to Transformation: A Comprehensive Review of Large Language
Models' Versatility
- URL: http://arxiv.org/abs/2402.16142v1
- Date: Sun, 25 Feb 2024 16:47:59 GMT
- Title: From Text to Transformation: A Comprehensive Review of Large Language
Models' Versatility
- Authors: Pravneet Kaur, Gautam Siddharth Kashyap, Ankit Kumar, Md Tabrez Nafis,
Sandeep Kumar and Vikrant Shokeen
- Abstract summary: This study explores the expanse of Large Language Models (LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional Representations from Transformers (BERT) across varied domains.
Despite their established prowess in Natural Language Processing (NLP), these LLMs have not been systematically examined for their impact on domains such as fitness, and holistic well-being, urban planning, climate modelling and disaster management.
- Score: 4.17610395079782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This groundbreaking study explores the expanse of Large Language Models
(LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional
Encoder Representations from Transformers (BERT) across varied domains ranging
from technology, finance, healthcare to education. Despite their established
prowess in Natural Language Processing (NLP), these LLMs have not been
systematically examined for their impact on domains such as fitness, and
holistic well-being, urban planning, climate modelling as well as disaster
management. This review paper, in addition to furnishing a comprehensive
analysis of the vast expanse and extent of LLMs' utility in diverse domains,
recognizes the research gaps and realms where the potential of LLMs is yet to
be harnessed. This study uncovers innovative ways in which LLMs can leave a
mark in the fields like fitness and wellbeing, urban planning, climate
modelling and disaster response which could inspire future researches and
applications in the said avenues.
Related papers
- Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - ChatGPT Alternative Solutions: Large Language Models Survey [0.0]
Large Language Models (LLMs) have ignited a surge in research contributions within this domain.
Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights.
This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.
arXiv Detail & Related papers (2024-03-21T15:16:50Z) - Linguistic Intelligence in Large Language Models for Telecommunications [5.06945923921948]
Large Language Models (LLMs) have emerged as a significant advancement in the field of Natural Language Processing (NLP)
This study seeks to evaluate the knowledge and understanding capabilities of LLMs within the telecommunications domain.
Our evaluation reveals that zero-shot LLMs can achieve performance levels comparable to the current state-of-the-art fine-tuned models.
arXiv Detail & Related papers (2024-02-24T14:01:07Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Large Language Models Meet Computer Vision: A Brief Survey [0.0]
Large Language Models (LLMs) and Computer Vision (CV) have emerged as a pivotal area of research, driving significant advancements in the field of Artificial Intelligence (AI)
This survey paper delves into the latest progressions in the domain of transformers, emphasizing their potential to revolutionize Vision Transformers (ViTs) and LLMs.
The survey is concluded by highlighting open directions in the field, suggesting potential venues for future research and development.
arXiv Detail & Related papers (2023-11-28T10:39:19Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
We describe the capabilities and constraints of Large Language Models (LLMs) within disparate academic disciplines, aiming to delineate their strengths and limitations with precision.
We examine how LLMs augment scientific inquiry, offering concrete examples such as accelerating literature review by summarizing vast numbers of publications.
We articulate the challenges LLMs face, including their reliance on extensive and sometimes biased datasets, and the potential ethical dilemmas stemming from their use.
arXiv Detail & Related papers (2023-11-03T19:41:09Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.