High-dimensional logistic regression with missing data: Imputation, regularization, and universality
- URL: http://arxiv.org/abs/2410.01093v1
- Date: Tue, 1 Oct 2024 21:41:21 GMT
- Title: High-dimensional logistic regression with missing data: Imputation, regularization, and universality
- Authors: Kabir Aladin Verchand, Andrea Montanari,
- Abstract summary: We study high-dimensional, ridge-regularized logistic regression.
We provide exact characterizations of both the prediction error and the estimation error.
- Score: 7.167672851569787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study high-dimensional, ridge-regularized logistic regression in a setting in which the covariates may be missing or corrupted by additive noise. When both the covariates and the additive corruptions are independent and normally distributed, we provide exact characterizations of both the prediction error as well as the estimation error. Moreover, we show that these characterizations are universal: as long as the entries of the data matrix satisfy a set of independence and moment conditions, our guarantees continue to hold. Universality, in turn, enables the detailed study of several imputation-based strategies when the covariates are missing completely at random. We ground our study by comparing the performance of these strategies with the conjectured performance -- stemming from replica theory in statistical physics -- of the Bayes optimal procedure. Our analysis yields several insights including: (i) a distinction between single imputation and a simple variant of multiple imputation and (ii) that adding a simple ridge regularization term to single-imputed logistic regression can yield an estimator whose prediction error is nearly indistinguishable from the Bayes optimal prediction error. We supplement our findings with extensive numerical experiments.
Related papers
- A Provably Accurate Randomized Sampling Algorithm for Logistic Regression [2.7930955543692817]
We present a simple, randomized sampling-based algorithm for logistic regression problem.
We prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations.
Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression.
arXiv Detail & Related papers (2024-02-26T06:20:28Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Conformal Prediction with Missing Values [19.18178194789968]
We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution.
We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk.
arXiv Detail & Related papers (2023-06-05T09:28:03Z) - RIGID: Robust Linear Regression with Missing Data [7.638042073679073]
We present a robust framework to perform linear regression with missing entries in the features.
We show that the proposed formulation, which naturally takes into account the dependency between different variables, reduces to a convex program.
In addition to a detailed analysis, we also analyze the behavior of the proposed framework, and present technical discussions.
arXiv Detail & Related papers (2022-05-26T21:10:17Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
Blockwise missing data occurs when we integrate multisource or multimodality data where different sources or modalities contain complementary information.
We propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations.
Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.
arXiv Detail & Related papers (2021-06-07T05:12:42Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.