論文の概要: Unveiling the Truth and Facilitating Change: Towards Agent-based
Large-scale Social Movement Simulation
- arxiv url: http://arxiv.org/abs/2402.16333v1
- Date: Mon, 26 Feb 2024 06:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-02-27 14:23:14.144795
- Title: Unveiling the Truth and Facilitating Change: Towards Agent-based
Large-scale Social Movement Simulation
- Title(参考訳): 真理とファシリテート変化の展開:エージェントによる大規模社会運動シミュレーションを目指して
- Authors: Xinyi Mou, Zhongyu Wei, Xuanjing Huang
- Abstract要約: ソーシャルメディアは社会運動の基盤として現れ、社会変革の推進に大きな影響を与えている。
ソーシャルメディアユーザシミュレーションのためのハイブリッドフレームワークを導入し、ユーザを2つのタイプに分類する。
我々は、トリガーイベントに続く応答ダイナミクスを再現するために、Twitterのような環境を構築します。
- 参考スコア(独自算出の注目度): 48.84837269991905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media has emerged as a cornerstone of social movements, wielding
significant influence in driving societal change. Simulating the response of
the public and forecasting the potential impact has become increasingly
important. However, existing methods for simulating such phenomena encounter
challenges concerning their efficacy and efficiency in capturing the behaviors
of social movement participants. In this paper, we introduce a hybrid framework
for social media user simulation, wherein users are categorized into two types.
Core users are driven by Large Language Models, while numerous ordinary users
are modeled by deductive agent-based models. We further construct a
Twitter-like environment to replicate their response dynamics following trigger
events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for
evaluation and conduct comprehensive experiments across real-world datasets.
Experimental results demonstrate the effectiveness and flexibility of our
method.
- Abstract(参考訳): ソーシャルメディアは社会運動の基盤として現れ、社会変革の推進に大きな影響を与えている。
大衆の反応をシミュレートし、潜在的な影響を予測することがますます重要になっている。
しかし,このような現象をシミュレートする既存の手法は,社会運動参加者の行動を把握する上での有効性と効率性に関する課題に直面している。
本稿では,ソーシャルメディアユーザシミュレーションのためのハイブリッドフレームワークを紹介し,ユーザを2つのタイプに分類する。
コアユーザはLarge Language Modelsによって駆動されるが、多くの一般ユーザはdeductive agent-based modelによってモデル化される。
さらに,トリガーイベントに追従した応答ダイナミクスを再現するtwitterライクな環境を構築した。
次に,実世界のデータセットを対象とした総合的な実験を行うための多面ベンチマーク somosimu-bench を開発した。
実験の結果,本手法の有効性と柔軟性が示された。
関連論文リスト
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
本稿では,社会シミュレーションのためのエージェント駆動世界モデルであるSocioVerseを紹介する。
私たちのフレームワークは、4つの強力なアライメントコンポーネントと1000万の実際の個人からなるユーザプールを備えています。
SocioVerseは、多様性、信頼性、代表性を確保しつつ、大規模な人口動態を反映できることを示した。
論文 参考訳(メタデータ) (2025-04-14T12:12:52Z) - Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
ソーシャルメディアプラットフォームにおけるエコーチャンバーの台頭は、分極と既存の信念の強化に対する懸念を高めている。
エコーチャンバーの形成をシミュレーションするための従来の手法は、しばしば事前定義された規則や数値シミュレーションに依存してきた。
本稿では,大言語モデル(LLM)を生成エージェントとして活用し,エコーチャンバー力学をシミュレートする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-25T12:05:11Z) - AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
本稿では,現実的な社会環境を統合した大規模社会シミュレータであるAgentSocietyを提案する。
提案したシミュレーターに基づいて,500万件のインタラクションをシミュレートし,10万件以上のエージェントの社会生活を生成する。
偏極、炎症性メッセージの普及、普遍的ベーシック・インカム・ポリシーの効果、ハリケーンなどの外部ショックの影響の4つに焦点をあてる。
論文 参考訳(メタデータ) (2025-02-12T15:27:07Z) - TrendSim: Simulating Trending Topics in Social Media Under Poisoning Attacks with LLM-based Multi-agent System [90.09422823129961]
本研究では, LLMをベースとしたマルチエージェントシステムであるTrendSimを提案する。
具体的には、タイムアウェアなインタラクション機構、集中型メッセージ配信、対話型システムを含むトレンドトピックのシミュレーション環境を作成する。
ソーシャルメディア上でユーザをシミュレートするLLMベースのヒューマンライクエージェントを開発し,プロトタイプベースの攻撃者による毒殺攻撃の再現を提案する。
論文 参考訳(メタデータ) (2024-12-14T12:04:49Z) - Build An Influential Bot In Social Media Simulations With Large Language Models [7.242974711907219]
本研究では,エージェントベースモデリング(ABM)とLarge Language Models(LLM)を組み合わせた新しいシミュレーション環境を提案する。
本稿では,Reinforcement Learning (RL) の革新的応用として,世論指導者形成の過程を再現する手法を提案する。
以上の結果から,行動空間の制限と自己観察の導入が,世論指導層形成の安定に寄与する重要な要因であることが示唆された。
論文 参考訳(メタデータ) (2024-11-29T11:37:12Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.2538500202457]
実世界のソーシャルメディアプラットフォームに基づくスケーラブルなソーシャルメディアシミュレータを提案する。
OASISは最大100万人のユーザをモデリングできる大規模なユーザシミュレーションをサポートする。
我々は、情報拡散、グループ分極、XプラットフォームとRedditプラットフォーム間の群れ効果など、様々な社会現象を再現する。
論文 参考訳(メタデータ) (2024-11-18T13:57:35Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Decoding Echo Chambers: LLM-Powered Simulations Revealing Polarization in Social Networks [12.812531689189065]
ソーシャルメディアがエコーチャンバーなどの重要な問題に与える影響に対処する必要がある。
伝統的な研究はしばしば感情的な傾向や意見の進化を数字や公式に単純化する。
偏光現象の評価と対策を行うために, LLM を用いた社会意見ネットワークのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-09-28T12:49:02Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
本稿では,ソーシャルメディア利用者の意見を動的に表現するための革新的なシミュレーション手法を提案する。
FDE-LLMアルゴリズムは意見力学と流行モデルを含む。
ユーザーを意見のリーダーとフォロワーに分類する。
論文 参考訳(メタデータ) (2024-09-13T11:02:28Z) - Simulating Public Administration Crisis: A Novel Generative Agent-Based
Simulation System to Lower Technology Barriers in Social Science Research [0.0]
本稿では,GPT-3.5大言語モデルに基づく社会シミュレーションのパラダイムを提案する。
これには、人間の認知、記憶、意思決定のフレームワークをエミュレートする生成エージェントの構築が含まれる。
エージェントはパーソナライズされたカスタマイズを示し、公開イベントは自然言語処理によってシームレスに組み込まれる。
論文 参考訳(メタデータ) (2023-11-12T20:48:01Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
マルチエージェントシステム(MAS)を含む多くのアプリケーションでは、実稼働に先立って、実験的な(Exp)自律エージェントを高忠実度シミュレータでテストすることが必須である。
本稿では,ExpエージェントとBGエージェントのライブインタラクションによって評価される実システムと合成マルチエージェントシステムとを区別する指標を提案する。
InTAGSを用いてシミュレータのキャリブレーションを行い、現状のWasserstein Generative Adversarial Networkアプローチと比較して、より現実的な市場データを生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-04T19:56:18Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。