論文の概要: Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
- arxiv url: http://arxiv.org/abs/2402.16333v2
- Date: Mon, 17 Jun 2024 05:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 05:46:37.730074
- Title: Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
- Title(参考訳): 真理とファシリテーティング・チェンジの展開--エージェントによる大規模社会運動シミュレーションを目指して
- Authors: Xinyi Mou, Zhongyu Wei, Xuanjing Huang,
- Abstract要約: ソーシャルメディアは社会運動の基盤として現れ、社会変革の推進に大きな影響を与えている。
ソーシャルメディアユーザシミュレーションのためのハイブリッドフレームワークHiSimを導入し、ユーザを2つのタイプに分類する。
我々は、トリガーイベントに続く応答ダイナミクスを再現するために、Twitterのような環境を構築します。
- 参考スコア(独自算出の注目度): 43.46328146533669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.
- Abstract(参考訳): ソーシャルメディアは社会運動の基盤として現れ、社会変革の推進に大きな影響を与えている。
大衆の反応をシミュレートし、潜在的な影響を予測することがますます重要になっている。
しかし,このような現象をシミュレートする既存の手法は,社会運動参加者の行動を把握する上での有効性と効率性に関する課題に直面している。
本稿では,ソーシャルメディアユーザシミュレーションのためのハイブリッドフレームワークHiSimを紹介し,ユーザを2つのタイプに分類する。
コアユーザはLarge Language Modelsによって駆動されるが、多くの一般ユーザはdeductive agent-based modelによってモデル化される。
さらに、トリガイベントに続く応答ダイナミクスを再現するために、Twitterのような環境を構築します。
次に,実世界のデータセットを対象とした総合的な実験を行うための,多面的ベンチマークSoMoSiMu-Benchを開発した。
実験の結果,本手法の有効性と柔軟性が示された。
関連論文リスト
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Decoding Echo Chambers: LLM-Powered Simulations Revealing Polarization in Social Networks [12.812531689189065]
ソーシャルメディアがエコーチャンバーなどの重要な問題に与える影響に対処する必要がある。
伝統的な研究はしばしば感情的な傾向や意見の進化を数字や公式に単純化する。
偏光現象の評価と対策を行うために, LLM を用いた社会意見ネットワークのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-09-28T12:49:02Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
本稿では,ソーシャルメディア利用者の意見を動的に表現するための革新的なシミュレーション手法を提案する。
FDE-LLMアルゴリズムは意見力学と流行モデルを含む。
ユーザーを意見のリーダーとフォロワーに分類する。
論文 参考訳(メタデータ) (2024-09-13T11:02:28Z) - Simulating Public Administration Crisis: A Novel Generative Agent-Based
Simulation System to Lower Technology Barriers in Social Science Research [0.0]
本稿では,GPT-3.5大言語モデルに基づく社会シミュレーションのパラダイムを提案する。
これには、人間の認知、記憶、意思決定のフレームワークをエミュレートする生成エージェントの構築が含まれる。
エージェントはパーソナライズされたカスタマイズを示し、公開イベントは自然言語処理によってシームレスに組み込まれる。
論文 参考訳(メタデータ) (2023-11-12T20:48:01Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
マルチエージェントシステム(MAS)を含む多くのアプリケーションでは、実稼働に先立って、実験的な(Exp)自律エージェントを高忠実度シミュレータでテストすることが必須である。
本稿では,ExpエージェントとBGエージェントのライブインタラクションによって評価される実システムと合成マルチエージェントシステムとを区別する指標を提案する。
InTAGSを用いてシミュレータのキャリブレーションを行い、現状のWasserstein Generative Adversarial Networkアプローチと比較して、より現実的な市場データを生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-04T19:56:18Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。