Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss
- URL: http://arxiv.org/abs/2410.22381v1
- Date: Tue, 29 Oct 2024 10:27:50 GMT
- Title: Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss
- Authors: José Manuel de Frutos, Manuel A. Vázquez, Pablo Olmos, Joaquín Míguez,
- Abstract summary: We build on the textitinvariant statistical loss (ISL) method introduced in citede2024training.
We extend it to handle heavy-tailed and multivariate data distributions.
We assess its performance in generative generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs)
- Score: 0.4249842620609682
- License:
- Abstract: Traditional implicit generative models are capable of learning highly complex data distributions. However, their training involves distinguishing real data from synthetically generated data using adversarial discriminators, which can lead to unstable training dynamics and mode dropping issues. In this work, we build on the \textit{invariant statistical loss} (ISL) method introduced in \cite{de2024training}, and extend it to handle heavy-tailed and multivariate data distributions. The data generated by many real-world phenomena can only be properly characterised using heavy-tailed probability distributions, and traditional implicit methods struggle to effectively capture their asymptotic behavior. To address this problem, we introduce a generator trained with ISL, that uses input noise from a generalised Pareto distribution (GPD). We refer to this generative scheme as Pareto-ISL for conciseness. Our experiments demonstrate that Pareto-ISL accurately models the tails of the distributions while still effectively capturing their central characteristics. The original ISL function was conceived for 1D data sets. When the actual data is $n$-dimensional, a straightforward extension of the method was obtained by targeting the $n$ marginal distributions of the data. This approach is computationally infeasible and ineffective in high-dimensional spaces. To overcome this, we extend the 1D approach using random projections and define a new loss function suited for multivariate data, keeping problems tractable by adjusting the number of projections. We assess its performance in multidimensional generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs) to prevent mode collapse, reporting promising results and highlighting its robustness across various hyperparameter settings.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
arXiv Detail & Related papers (2024-02-26T09:32:28Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Learn from Unpaired Data for Image Restoration: A Variational Bayes
Approach [18.007258270845107]
We propose LUD-VAE, a deep generative method to learn the joint probability density function from data sampled from marginal distributions.
We apply our method to real-world image denoising and super-resolution tasks and train the models using the synthetic data generated by the LUD-VAE.
arXiv Detail & Related papers (2022-04-21T13:27:17Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.