Label Learning Method Based on Tensor Projection
- URL: http://arxiv.org/abs/2402.16544v1
- Date: Mon, 26 Feb 2024 13:03:26 GMT
- Title: Label Learning Method Based on Tensor Projection
- Authors: Jing Li and Quanxue Gao and Qianqian Wang and Cheng Deng and Deyan Xie
- Abstract summary: We propose a label learning method based on tensor projection (LLMTP)
We extend the matrix projection transformation to tensor projection, so that the spatial structure information between views can be fully utilized.
In addition, we introduce the tensor Schatten $p$-norm regularization to make the clustering label matrices of different views as consistent as possible.
- Score: 82.51786483693206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering method based on anchor graph has been widely concerned
due to its high efficiency and effectiveness. In order to avoid
post-processing, most of the existing anchor graph-based methods learn
bipartite graphs with connected components. However, such methods have high
requirements on parameters, and in some cases it may not be possible to obtain
bipartite graphs with clear connected components. To end this, we propose a
label learning method based on tensor projection (LLMTP). Specifically, we
project anchor graph into the label space through an orthogonal projection
matrix to obtain cluster labels directly. Considering that the spatial
structure information of multi-view data may be ignored to a certain extent
when projected in different views separately, we extend the matrix projection
transformation to tensor projection, so that the spatial structure information
between views can be fully utilized. In addition, we introduce the tensor
Schatten $p$-norm regularization to make the clustering label matrices of
different views as consistent as possible. Extensive experiments have proved
the effectiveness of the proposed method.
Related papers
- Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
Multi-view clustering methods based on anchor graph factorization lack adequate cluster interpretability for the decomposed matrix.
We address this limitation by using non-negative tensor factorization to decompose an anchor graph tensor that combines anchor graphs from multiple views.
arXiv Detail & Related papers (2024-04-01T03:23:55Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
We propose a general framework for multi-label image classification that can effectively mine complex inter-label relationships.
Our proposed methods can achieve state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2022-03-08T12:39:05Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Towards Clustering-friendly Representations: Subspace Clustering via
Graph Filtering [16.60975509085194]
We propose a graph filtering approach by which a smooth representation is achieved.
Experiments on image and document clustering datasets demonstrate that our method improves upon state-of-the-art subspace clustering techniques.
An ablation study shows that graph filtering can remove noise, preserve structure in the image, and increase the separability of classes.
arXiv Detail & Related papers (2021-06-18T02:21:36Z) - Multi-Label Text Classification using Attention-based Graph Neural
Network [0.0]
A graph attention network-based model is proposed to capture the attentive dependency structure among the labels.
The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
arXiv Detail & Related papers (2020-03-22T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.