Towards Clustering-friendly Representations: Subspace Clustering via
Graph Filtering
- URL: http://arxiv.org/abs/2106.09874v1
- Date: Fri, 18 Jun 2021 02:21:36 GMT
- Title: Towards Clustering-friendly Representations: Subspace Clustering via
Graph Filtering
- Authors: Zhengrui Ma, Zhao Kang, Guangchun Luo, Ling Tian
- Abstract summary: We propose a graph filtering approach by which a smooth representation is achieved.
Experiments on image and document clustering datasets demonstrate that our method improves upon state-of-the-art subspace clustering techniques.
An ablation study shows that graph filtering can remove noise, preserve structure in the image, and increase the separability of classes.
- Score: 16.60975509085194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Finding a suitable data representation for a specific task has been shown to
be crucial in many applications. The success of subspace clustering depends on
the assumption that the data can be separated into different subspaces.
However, this simple assumption does not always hold since the raw data might
not be separable into subspaces. To recover the ``clustering-friendly''
representation and facilitate the subsequent clustering, we propose a graph
filtering approach by which a smooth representation is achieved. Specifically,
it injects graph similarity into data features by applying a low-pass filter to
extract useful data representations for clustering. Extensive experiments on
image and document clustering datasets demonstrate that our method improves
upon state-of-the-art subspace clustering techniques. Especially, its
comparable performance with deep learning methods emphasizes the effectiveness
of the simple graph filtering scheme for many real-world applications. An
ablation study shows that graph filtering can remove noise, preserve structure
in the image, and increase the separability of classes.
Related papers
- Label Learning Method Based on Tensor Projection [82.51786483693206]
We propose a label learning method based on tensor projection (LLMTP)
We extend the matrix projection transformation to tensor projection, so that the spatial structure information between views can be fully utilized.
In addition, we introduce the tensor Schatten $p$-norm regularization to make the clustering label matrices of different views as consistent as possible.
arXiv Detail & Related papers (2024-02-26T13:03:26Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Smoothed Multi-View Subspace Clustering [14.77544837600836]
We propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC)
It employs a novel technique, i.e., graph filtering, to obtain a smooth representation for each view.
Experiments on benchmark datasets validate the superiority of our approach.
arXiv Detail & Related papers (2021-06-18T02:24:19Z) - Structured Graph Learning for Scalable Subspace Clustering: From
Single-view to Multi-view [28.779909990410978]
Graph-based subspace clustering methods have exhibited promising performance.
They still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data points.
We propose a scalable graph learning framework, seeking to address the above three challenges simultaneously.
arXiv Detail & Related papers (2021-02-16T03:46:11Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.