l1-norm regularized l1-norm best-fit lines
- URL: http://arxiv.org/abs/2402.16712v2
- Date: Wed, 6 Mar 2024 17:16:38 GMT
- Title: l1-norm regularized l1-norm best-fit lines
- Authors: Xiao Ling, Paul Brooks
- Abstract summary: We present a novel fitting procedure, utilizing simple ratios and sorting techniques.
The proposed algorithm demonstrates a worst-case time complexity of $O$(n2 m log n)$ and, in certain instances, achieves global optimality for the sparse subspace.
- Score: 3.0963566281269594
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we propose an optimization framework for estimating a sparse
robust one-dimensional subspace. Our objective is to minimize both the
representation error and the penalty, in terms of the l1-norm criterion. Given
that the problem is NP-hard, we introduce a linear relaxation-based approach.
Additionally, we present a novel fitting procedure, utilizing simple ratios and
sorting techniques. The proposed algorithm demonstrates a worst-case time
complexity of $O(n^2 m \log n)$ and, in certain instances, achieves global
optimality for the sparse robust subspace, thereby exhibiting polynomial time
efficiency. Compared to extant methodologies, the proposed algorithm finds the
subspace with the lowest discordance, offering a smoother trade-off between
sparsity and fit. Its architecture affords scalability, evidenced by a 16-fold
improvement in computational speeds for matrices of 2000x2000 over CPU version.
Furthermore, this method is distinguished by several advantages, including its
independence from initialization and deterministic and replicable procedures.
Furthermore, this method is distinguished by several advantages, including its
independence from initialization and deterministic and replicable procedures.
The real-world example demonstrates the effectiveness of algorithm in achieving
meaningful sparsity, underscoring its precise and useful application across
various domains.
Related papers
- The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
This paper proposes an innovative method specifically designed for kernel support vector machines (SVMs)
It not only achieves faster iteration per iteration but also exhibits enhanced convergence when compared to conventional SFO techniques.
Our experimental results demonstrate that the proposed algorithm not only maintains but potentially exceeds the scalability of SFO methods.
arXiv Detail & Related papers (2024-07-30T17:03:19Z) - Fast Screening Rules for Optimal Design via Quadratic Lasso
Reformulation [0.135975510645475]
In this work, we derive safe screening rules that can be used to discard inessential samples.
The new tests are much faster to compute, especially for problems involving a parameter space of high dimension.
We show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $ell_$-penalty.
arXiv Detail & Related papers (2023-10-13T08:10:46Z) - Best-Subset Selection in Generalized Linear Models: A Fast and
Consistent Algorithm via Splicing Technique [0.6338047104436422]
Best subset section has been widely regarded as the Holy Grail of problems of this type.
We proposed and illustrated an algorithm for best subset recovery in mild conditions.
Our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits.
arXiv Detail & Related papers (2023-08-01T03:11:31Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.