Quantum error thresholds for gauge-redundant digitizations of lattice
field theories
- URL: http://arxiv.org/abs/2402.16780v1
- Date: Mon, 26 Feb 2024 17:51:48 GMT
- Title: Quantum error thresholds for gauge-redundant digitizations of lattice
field theories
- Authors: Marcela Carena, Henry Lamm, Ying-Ying Li, Wanqiang Liu
- Abstract summary: We consider the correctable errors for generic finite gauge groups and design the quantum circuits to detect and correct them.
We calculate the error thresholds below which the gauge-redundant digitization with Gauss's law error correction has better fidelity than the gauge-fixed digitization.
- Score: 9.080653388540972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the quantum simulation of lattice gauge theories, gauge symmetry can be
either fixed or encoded as a redundancy of the Hilbert space. While
gauge-fixing reduces the number of qubits, keeping the gauge redundancy can
provide code space to mitigate and correct quantum errors by checking and
restoring Gauss's law. In this work, we consider the correctable errors for
generic finite gauge groups and design the quantum circuits to detect and
correct them. We calculate the error thresholds below which the gauge-redundant
digitization with Gauss's law error correction has better fidelity than the
gauge-fixed digitization. Our results provide guidance for fault-tolerant
quantum simulations of lattice gauge theories.
Related papers
- Quantum Error Transmutation [1.8719295298860394]
We introduce a generalisation of quantum error correction, relaxing the requirement that a code should identify and correct a set of physical errors on the Hilbert space of a quantum computer exactly.
We call these quantum error transmuting codes.
They are of particular interest for the simulation of noisy quantum systems, and for use in algorithms inherently robust to errors of a particular character.
arXiv Detail & Related papers (2023-10-16T11:09:59Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Robustness of Gauge Digitization to Quantum Noise [0.0]
Quantum noise limits the use of quantum memory in high energy physics simulations.
In particular, it breaks the gauge symmetry of stored quantum states.
We demonstrate that optimizing the digitization of gauge theories to quantum memory to account for noise channels can extend the lifetime before complete loss of gauge symmetry by $2-10times$ over some other digitizations.
arXiv Detail & Related papers (2023-01-24T18:27:39Z) - Finite-round quantum error correction on symmetric quantum sensors [8.339831319589134]
Heisenberg limit provides a quadratic improvement over the standard quantum limit.
It remains elusive because of the inevitable presence of noise decohering quantum sensors.
We side-step this no-go result by using an optimal finite number of rounds of quantum error correction.
arXiv Detail & Related papers (2022-12-12T23:41:51Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Non-commutative graphs based on finite-infinite system couplings:
quantum error correction for a qubit coupled to a coherent field [0.0]
We study error correction in the case of a finite-dimensional quantum system coupled to an infinite dimensional system.
We find the quantum anticlique, which is the projector on the error correcting subspace, and analyze it as a function of the frequencies of the qubit and the bosonic field.
arXiv Detail & Related papers (2021-04-24T12:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.