Quantum Error Transmutation
- URL: http://arxiv.org/abs/2310.10278v1
- Date: Mon, 16 Oct 2023 11:09:59 GMT
- Title: Quantum Error Transmutation
- Authors: Daniel Zhang, Toby Cubitt
- Abstract summary: We introduce a generalisation of quantum error correction, relaxing the requirement that a code should identify and correct a set of physical errors on the Hilbert space of a quantum computer exactly.
We call these quantum error transmuting codes.
They are of particular interest for the simulation of noisy quantum systems, and for use in algorithms inherently robust to errors of a particular character.
- Score: 1.8719295298860394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a generalisation of quantum error correction, relaxing the
requirement that a code should identify and correct a set of physical errors on
the Hilbert space of a quantum computer exactly, instead allowing recovery up
to a pre-specified admissible set of errors on the code space. We call these
quantum error transmuting codes. They are of particular interest for the
simulation of noisy quantum systems, and for use in algorithms inherently
robust to errors of a particular character. Necessary and sufficient algebraic
conditions on the set of physical and admissible errors for error transmutation
are derived, generalising the Knill-Laflamme quantum error correction
conditions. We demonstrate how some existing codes, including fermionic
encodings, have error transmuting properties to interesting classes of
admissible errors. Additionally, we report on the existence of some new codes,
including low-qubit and translation invariant examples.
Related papers
- Advantage of Quantum Neural Networks as Quantum Information Decoders [1.1842028647407803]
We study the problem of decoding quantum information encoded in the groundspaces of topological stabilizer Hamiltonians.
We first prove that the standard stabilizer-based error correction and decoding schemes work adequately perturbed well in such quantum codes.
We then prove that Quantum Neural Network (QNN) decoders provide an almost quadratic improvement on the readout error.
arXiv Detail & Related papers (2024-01-11T23:56:29Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Adaptive surface code for quantum error correction in the presence of
temporary or permanent defects [0.0]
We show that combining an appropriate defect detection algorithm and a quarantine of the identified zone allows one to preserve the advantage of quantum error correction at finite code sizes.
Results pave the way to the experimental implementation of large-scale quantum computers where defects will be inevitable.
arXiv Detail & Related papers (2022-11-15T19:39:49Z) - Effectiveness of Variable Distance Quantum Error Correcting Codes [1.0203602318836442]
We show that quantum programs can tolerate non-trivial errors and still produce usable output.
In addition, we propose using variable strength (distance) error correction, where overhead can be reduced by only protecting more sensitive parts of the quantum program with high distance codes.
arXiv Detail & Related papers (2021-12-19T02:45:18Z) - Short Codes for Quantum Channels with One Prevalent Pauli Error Type [6.548580592686076]
We investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type.
These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others.
arXiv Detail & Related papers (2021-04-09T13:51:51Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Certified quantum gates [0.0]
We present a strategy for developing quantum error detection for certain gate imperfections.
Error detection can be used to certify individual gate operations against certain errors.
arXiv Detail & Related papers (2020-08-17T17:36:51Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.