論文の概要: Training Neural Networks from Scratch with Parallel Low-Rank Adapters
- arxiv url: http://arxiv.org/abs/2402.16828v2
- Date: Fri, 26 Jul 2024 21:56:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 23:57:25.847438
- Title: Training Neural Networks from Scratch with Parallel Low-Rank Adapters
- Title(参考訳): 並列低ランク適応器を用いたスクラッチからのニューラルネットワークの学習
- Authors: Minyoung Huh, Brian Cheung, Jeremy Bernstein, Phillip Isola, Pulkit Agrawal,
- Abstract要約: 計算ノード間の複数の低ランクヘッドの並列トレーニングを実現するために設計された,新しい双方向最適化アルゴリズムである LoRA-the-Explorer (LTE) を導入する。
我々のアプローチには、様々なビジョンデータセットを用いたビジョントランスフォーマーの広範な実験が含まれており、LTEが標準の事前トレーニングと競合していることが示されている。
- 参考スコア(独自算出の注目度): 46.764982726136054
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The scalability of deep learning models is fundamentally limited by computing resources, memory, and communication. Although methods like low-rank adaptation (LoRA) have reduced the cost of model finetuning, its application in model pre-training remains largely unexplored. This paper explores extending LoRA to model pre-training, identifying the inherent constraints and limitations of standard LoRA in this context. We introduce LoRA-the-Explorer (LTE), a novel bi-level optimization algorithm designed to enable parallel training of multiple low-rank heads across computing nodes, thereby reducing the need for frequent synchronization. Our approach includes extensive experimentation on vision transformers using various vision datasets, demonstrating that LTE is competitive with standard pre-training.
- Abstract(参考訳): ディープラーニングモデルのスケーラビリティは、コンピューティングリソース、メモリ、通信によって根本的に制限されている。
ローランク適応 (LoRA) のような手法は、モデル微調整のコストを削減しているが、モデル事前訓練におけるその適用は、ほとんど探索されていない。
本稿では、LoRAを事前学習のモデルに拡張し、この文脈における標準LoRA固有の制約と制限を特定する。
演算ノード間の複数の低ランクヘッドの並列トレーニングを実現するために設計された,新しい双方向最適化アルゴリズムであるLoRA-the-Explorer(LTE)を導入し,頻繁な同期の必要性を低減した。
我々のアプローチには、様々なビジョンデータセットを用いたビジョントランスフォーマーの広範な実験が含まれており、LTEが標準の事前トレーニングと競合していることが示されている。
関連論文リスト
- Federated Split Learning with Model Pruning and Gradient Quantization in Wireless Networks [7.439160287320074]
Federated split learning (FedSL)は、モデル分割によるエッジデバイスとサーバ間の協調トレーニングを実装している。
本稿では,リソース制約のあるエッジデバイスのトレーニング負担を軽減する軽量なFedSL方式を提案する。
提案手法の収束性能を定量化するために理論的解析を行う。
論文 参考訳(メタデータ) (2024-12-09T11:43:03Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
大規模言語モデル(LLM)は、微調整を必要とせず、強力な少数ショット適応性を示す。
現在のVisual Foundation Models (VFM) は十分なチューニングデータを持つ明示的な微調整を必要とする。
そこで我々は, メタ学習目的の多様なLoRAからメタLoRAを蒸留するフレームワークであるLoRA Recycleを提案する。
論文 参考訳(メタデータ) (2024-12-03T07:25:30Z) - Tensor Train Low-rank Approximation (TT-LoRA): Democratizing AI with Accelerated LLMs [1.5503410315996757]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクで顕著な機能を示している。
しかし、LLMの複雑さはますます増大し、膨大な計算資源を必要としている。
本稿では,新しいパラメータ効率細調整(PEFT)手法であるTrain Low-Rank Approximation (TT-LoRA)を紹介する。
論文 参考訳(メタデータ) (2024-08-02T04:45:58Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
フェデレートラーニング(FL)は、複数のエッジデバイスにまたがる機械学習モデルを協調的にトレーニングするための、有望なアプローチとして登場した。
トレーニングデータとリソースに制限のあるオンデバイスビジョンタスクのための軽量畳み込み変換器を提案する。
論文 参考訳(メタデータ) (2024-01-22T02:17:36Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - Federated Learning over Hierarchical Wireless Networks: Training Latency Minimization via Submodel Partitioning [15.311309249848739]
階層型独立サブモデルトレーニング(Hierarchical independent submodel training、HIST)は、階層型クラウド-エッジ-クライアントネットワークにおけるこれらの問題に対処することを目的とした新しいFL方法論である。
本研究では,HISTを空気上計算(AirComp)で拡張することにより,エッジセル上でのモデルアグリゲーションの効率をより高めることができることを示す。
論文 参考訳(メタデータ) (2023-10-27T04:42:59Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
私たちは、標準的なニューラルトレーニング戦略を採用することができる分析フレームワークを提供しています。
我々は、Desiderata viaak-Lojasiewicz, smoothness, and standard assumptionsを達成する。
論文 参考訳(メタデータ) (2021-11-02T20:24:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。