Quantum Inspired Chaotic Salp Swarm Optimization for Dynamic Optimization
- URL: http://arxiv.org/abs/2402.16863v1
- Date: Sun, 21 Jan 2024 02:59:37 GMT
- Title: Quantum Inspired Chaotic Salp Swarm Optimization for Dynamic Optimization
- Authors: Sanjai Pathak, Ashish Mani, Mayank Sharma, Amlan Chatterjee,
- Abstract summary: We study a variant of SSA known as QSSO, which integrates the principles of quantum computing.
A chaotic operator is employed with quantum computing to respond to change and guarantee to increase individual searchability.
As promised, the introduced QCSSO is discovered as the rival algorithm for DOPs.
- Score: 4.44483539967295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world problems are dynamic optimization problems that are unknown beforehand. In practice, unpredictable events such as the arrival of new jobs, due date changes, and reservation cancellations, changes in parameters or constraints make the search environment dynamic. Many algorithms are designed to deal with stationary optimization problems, but these algorithms do not face dynamic optimization problems or manage them correctly. Although some optimization algorithms are proposed to deal with the changes in dynamic environments differently, there are still areas of improvement in existing algorithms due to limitations or drawbacks, especially in terms of locating and following the previously identified optima. With this in mind, we studied a variant of SSA known as QSSO, which integrates the principles of quantum computing. An attempt is made to improve the overall performance of standard SSA to deal with the dynamic environment effectively by locating and tracking the global optima for DOPs. This work is an extension of the proposed new algorithm QSSO, known as the Quantum-inspired Chaotic Salp Swarm Optimization (QCSSO) Algorithm, which details the various approaches considered while solving DOPs. A chaotic operator is employed with quantum computing to respond to change and guarantee to increase individual searchability by improving population diversity and the speed at which the algorithm converges. We experimented by evaluating QCSSO on a well-known generalized dynamic benchmark problem (GDBG) provided for CEC 2009, followed by a comparative numerical study with well-regarded algorithms. As promised, the introduced QCSSO is discovered as the rival algorithm for DOPs.
Related papers
- A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Monte Carlo Tree Search based Hybrid Optimization of Variational Quantum
Circuits [7.08228773002332]
We propose a new variational quantum algorithm called MCTS-QAOA.
It combines a Monte Carlo tree search method with an improved natural policy gradient solver to optimize the discrete and continuous variables in the quantum circuit.
We find that MCTS-QAOA has excellent noise-resilience properties and outperforms prior algorithms in challenging instances of the generalized QAOA.
arXiv Detail & Related papers (2022-03-30T23:15:21Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.