Diffusion Posterior Proximal Sampling for Image Restoration
- URL: http://arxiv.org/abs/2402.16907v1
- Date: Sun, 25 Feb 2024 04:24:28 GMT
- Title: Diffusion Posterior Proximal Sampling for Image Restoration
- Authors: Hongjie Wu, Linchao He, Mingqin Zhang, Dongdong Chen, Kunming Luo,
Mengting Luo, Ji-Zhe Zhou, Hu Chen, Jiancheng Lv
- Abstract summary: Diffusion-based image restoration algorithms exploit pre-trained diffusion models to leverage data priors.
These strategies initiate the denoising process with pure white noise and incorporate random noise at each generative step, leading to over-smoothed results.
In this paper, we introduce a refined paradigm for diffusion-based image restoration.
- Score: 28.388405376136095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable efficacy in generating
high-quality samples. Existing diffusion-based image restoration algorithms
exploit pre-trained diffusion models to leverage data priors, yet they still
preserve elements inherited from the unconditional generation paradigm. These
strategies initiate the denoising process with pure white noise and incorporate
random noise at each generative step, leading to over-smoothed results. In this
paper, we introduce a refined paradigm for diffusion-based image restoration.
Specifically, we opt for a sample consistent with the measurement identity at
each generative step, exploiting the sampling selection as an avenue for output
stability and enhancement. Besides, we start the restoration process with an
initialization combined with the measurement signal, providing supplementary
information to better align the generative process. Extensive experimental
results and analyses validate the effectiveness of our proposed approach across
diverse image restoration tasks.
Related papers
- Training-Free Adaptive Diffusion with Bounded Difference Approximation Strategy [44.09909260046396]
We propose AdaptiveDiffusion to reduce noise prediction steps during the denoising process.
Our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 25x speedup.
arXiv Detail & Related papers (2024-10-13T15:19:18Z) - Beta Sampling is All You Need: Efficient Image Generation Strategy for Diffusion Models using Stepwise Spectral Analysis [22.02829139522153]
We propose an efficient time step sampling method based on an image spectral analysis of the diffusion process.
Instead of the traditional uniform distribution-based time step sampling, we introduce a Beta distribution-like sampling technique.
Our hypothesis is that certain steps exhibit significant changes in image content, while others contribute minimally.
arXiv Detail & Related papers (2024-07-16T20:53:06Z) - Model-Agnostic Human Preference Inversion in Diffusion Models [31.992947353231564]
We propose a novel sampling design to achieve high-quality one-step image generation aligning with human preferences.
Our approach, Prompt Adaptive Human Preference Inversion (PAHI), optimize the noise distributions for each prompt based on human preferences.
Our experiments showcase that the tailored noise distributions significantly improve image quality with only a marginal increase in computational cost.
arXiv Detail & Related papers (2024-04-01T03:18:12Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise [34.65659277870287]
Research on denoising diffusion models has expanded its application to the field of image restoration.
We propose Resfusion, a framework that incorporates the residual term into the diffusion forward process.
We show that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps.
arXiv Detail & Related papers (2023-11-25T02:09:38Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Markup-to-Image Diffusion Models with Scheduled Sampling [111.30188533324954]
Building on recent advances in image generation, we present a data-driven approach to rendering markup into images.
The approach is based on diffusion models, which parameterize the distribution of data using a sequence of denoising operations.
We conduct experiments on four markup datasets: mathematical formulas (La), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES)
arXiv Detail & Related papers (2022-10-11T04:56:12Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.