Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise
- URL: http://arxiv.org/abs/2311.14900v4
- Date: Thu, 24 Oct 2024 04:55:59 GMT
- Title: Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise
- Authors: Zhenning Shi, Haoshuai Zheng, Chen Xu, Changsheng Dong, Bin Pan, Xueshuo Xie, Along He, Tao Li, Huazhu Fu,
- Abstract summary: Research on denoising diffusion models has expanded its application to the field of image restoration.
We propose Resfusion, a framework that incorporates the residual term into the diffusion forward process.
We show that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps.
- Score: 34.65659277870287
- License:
- Abstract: Recently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion.
Related papers
- Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - Blind Image Restoration via Fast Diffusion Inversion [17.139433082780037]
Blind Image Restoration via fast Diffusion (BIRD) is a blind IR method that jointly optimize for the degradation model parameters and the restored image.
A key idea in our method is not to modify the reverse sampling, i.e., not to alter all the intermediate latents, once an initial noise is sampled.
We experimentally validate BIRD on several image restoration tasks and show that it achieves state of the art performance on all of them.
arXiv Detail & Related papers (2024-05-29T23:38:12Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - Diffusion Posterior Proximal Sampling for Image Restoration [27.35952624032734]
We present a refined paradigm for diffusion-based image restoration.
Specifically, we opt for a sample consistent with the measurement identity at each generative step.
The number of candidate samples used for selection is adaptively determined based on the signal-to-noise ratio of the timestep.
arXiv Detail & Related papers (2024-02-25T04:24:28Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Residual Denoising Diffusion Models [12.698791701225499]
We propose a novel dual diffusion process that decouples the traditional single denoising diffusion process into residual diffusion and noise diffusion.
This dual diffusion framework expands the denoising-based diffusion models into a unified and interpretable model for both image generation and restoration.
We provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework.
arXiv Detail & Related papers (2023-08-25T23:54:15Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.