論文の概要: Avoiding Catastrophic Forgetting in Visual Classification Using Human
Concept Formation
- arxiv url: http://arxiv.org/abs/2402.16933v1
- Date: Mon, 26 Feb 2024 17:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 19:04:11.297380
- Title: Avoiding Catastrophic Forgetting in Visual Classification Using Human
Concept Formation
- Title(参考訳): 人間の概念形成を用いた視覚分類におけるカタストロフィック・フォーミングの回避
- Authors: Nicki Barari, Xin Lian, Christopher J. MacLellan
- Abstract要約: 我々は,人間に似た学習システムであるCobweb上に構築された新しい視覚分類手法であるCobweb4Vを提案する。
本研究では,視覚概念の学習におけるCobweb4Vの有効性を示す総合的な評価を行う。
これらの特徴は、人間の認知における学習戦略と一致し、Cobweb4Vをニューラルネットワークアプローチの有望な代替品として位置づけている。
- 参考スコア(独自算出の注目度): 0.8159711103888622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have excelled in machine learning, particularly in
vision tasks, however, they often suffer from catastrophic forgetting when
learning new tasks sequentially. In this work, we propose Cobweb4V, a novel
visual classification approach that builds on Cobweb, a human like learning
system that is inspired by the way humans incrementally learn new concepts over
time. In this research, we conduct a comprehensive evaluation, showcasing the
proficiency of Cobweb4V in learning visual concepts, requiring less data to
achieve effective learning outcomes compared to traditional methods,
maintaining stable performance over time, and achieving commendable asymptotic
behavior, without catastrophic forgetting effects. These characteristics align
with learning strategies in human cognition, positioning Cobweb4V as a
promising alternative to neural network approaches.
- Abstract(参考訳): 深層ニューラルネットワークは、特に視覚タスクにおいて機械学習に優れてきたが、新しいタスクを逐次学習する際の破滅的な忘れに苦しむことが多い。
本研究では,人間が時間とともに新しい概念を段階的に学習する方法に着想を得た,人間ライクな学習システムであるcobwebをベースとする,新しい視覚分類手法であるcobweb4vを提案する。
本研究では,視覚概念の学習におけるCobweb4Vの習熟度を示すとともに,従来の手法に比べて学習効率の低いデータを必要とすること,時間の経過とともに安定したパフォーマンスを維持すること,破滅的な記憶効果を伴わずに回復可能な漸近的行動を達成すること,を包括的に評価する。
これらの特徴は、人間の認知における学習戦略と一致し、cobweb4vをニューラルネットワークアプローチの有望な代替として位置づけている。
関連論文リスト
- Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Degraded Polygons Raise Fundamental Questions of Neural Network Perception [5.423100066629618]
我々は、30年以上前に人間の視覚の認識・コンポーネント理論で導入された、劣化中の画像の復元作業を再考する。
周辺劣化した正多角形の大規模データセットを高速に生成するための自動形状復元テストを実装した。
この単純なタスクにおけるニューラルネットワークの振舞いは、人間の振舞いと矛盾する。
論文 参考訳(メタデータ) (2023-06-08T06:02:39Z) - Activation Learning by Local Competitions [4.441866681085516]
我々は,神経細胞間の局所的な競合によって特徴を見出す,生物学に着想を得た学習ルールを開発した。
この局所学習規則によって学習された教師なし特徴が事前学習モデルとして機能することが実証された。
論文 参考訳(メタデータ) (2022-09-26T10:43:29Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
ディープニューラルネットワークにおける勾配に基づくクレジット割り当ての現在の手法は、無限小のフィードバック信号を必要とする。
我々は、神経活動に対する強いフィードバックと勾配に基づく学習を組み合わせることで、ニューラルネットワークの最適化に関する新たな視点を自然に導き出すことを示す。
DFCにおける強いフィードバックを用いることで、空間と時間において完全に局所的な学習規則を用いることで、前向きとフィードバックの接続を同時に学習できることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:06:21Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
ニューラルネットワークアーキテクチャの"幅"が破滅的忘れに及ぼす影響について検討する。
ネットワークの学習力学を様々な観点から研究する。
論文 参考訳(メタデータ) (2021-10-21T23:49:23Z) - Training Spiking Neural Networks Using Lessons From Deep Learning [28.827506468167652]
シナプスとニューロンの内部構造は、ディープラーニングの未来を垣間見ることができます。
いくつかのアイデアはニューロモルフィックエンジニアリングコミュニティでよく受け入れられ、一般的に使われているが、他のアイデアはここで初めて提示または正当化されている。
PythonパッケージであるsnnTorchを使って、この論文を補完する一連のインタラクティブチュートリアルも利用可能である。
論文 参考訳(メタデータ) (2021-09-27T09:28:04Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。