A Survey of Large Language Models in Cybersecurity
- URL: http://arxiv.org/abs/2402.16968v1
- Date: Mon, 26 Feb 2024 19:06:02 GMT
- Title: A Survey of Large Language Models in Cybersecurity
- Authors: Gabriel de Jesus Coelho da Silva, Carlos Becker Westphall
- Abstract summary: Large Language Models (LLMs) have quickly risen to prominence due to their ability to perform at or close to the state-of-the-art in a variety of fields while handling natural language.
This survey aims to identify where in the field of cybersecurity LLMs have already been applied, the ways in which they are being used and their limitations in the field.
- Score: 0.5221459608786241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have quickly risen to prominence due to their
ability to perform at or close to the state-of-the-art in a variety of fields
while handling natural language. An important field of research is the
application of such models at the cybersecurity context. This survey aims to
identify where in the field of cybersecurity LLMs have already been applied,
the ways in which they are being used and their limitations in the field.
Finally, suggestions are made on how to improve such limitations and what can
be expected from these systems once these limitations are overcome.
Related papers
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
Large language models (LLMs) have made remarkable advancements in natural language processing.
These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities.
Privacy and security issues have been revealed throughout their life cycle.
arXiv Detail & Related papers (2024-06-12T07:55:32Z) - Privacy Preserving Prompt Engineering: A Survey [14.402638881376419]
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks.
As a result, the sizes of these models have notably expanded in recent years.
Privacy concerns have become a major obstacle in its widespread usage.
arXiv Detail & Related papers (2024-04-09T04:11:25Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence.
This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity.
arXiv Detail & Related papers (2024-01-30T16:55:25Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.6986500640871482]
Large Language Models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering.
These models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and Personally Identifiable Information (PII) leakage attacks.
This survey provides a thorough review of the security and privacy challenges of LLMs for both training data and users, along with the application-based risks in various domains, such as transportation, education, and healthcare.
arXiv Detail & Related papers (2024-01-30T04:00:54Z) - LLMs for Multi-Modal Knowledge Extraction and Analysis in
Intelligence/Safety-Critical Applications [0.0]
Large Language Models have seen rapid progress in capability in recent years.
There is a strong demand to use such models in a wide variety of applications.
But, due to unresolved vulnerabilities and limitations, great care needs to be used before applying them to intelligence and safety-critical applications.
arXiv Detail & Related papers (2023-12-05T19:04:50Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.