Privacy Preserving Prompt Engineering: A Survey
- URL: http://arxiv.org/abs/2404.06001v2
- Date: Thu, 11 Apr 2024 00:17:18 GMT
- Title: Privacy Preserving Prompt Engineering: A Survey
- Authors: Kennedy Edemacu, Xintao Wu,
- Abstract summary: Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks.
As a result, the sizes of these models have notably expanded in recent years.
Privacy concerns have become a major obstacle in its widespread usage.
- Score: 14.402638881376419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
Related papers
- Adapter-based Approaches to Knowledge-enhanced Language Models -- A Survey [48.52320309766703]
Knowledge-enhanced language models (KELMs) have emerged as promising tools to bridge the gap between large-scale language models and domain-specific knowledge.
KELMs can achieve higher factual accuracy and hallucinations by leveraging knowledge graphs (KGs)
arXiv Detail & Related papers (2024-11-25T14:10:24Z) - Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control [44.326363467045496]
Large Language Models (LLMs) have become a critical area of research in Reinforcement Learning from Human Feedback (RLHF)
representation engineering offers a new, training-free approach.
This technique leverages semantic features to control the representation of LLM's intermediate hidden states.
It is difficult to encode various semantic contents, like honesty and safety, into a singular semantic feature.
arXiv Detail & Related papers (2024-11-04T08:36:03Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
Large Language Models (LLMs) exhibit remarkably powerful capabilities.
One of the crucial factors to achieve success is aligning the LLM's output with human preferences.
We decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm.
arXiv Detail & Related papers (2024-09-04T15:11:55Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Simple Techniques for Enhancing Sentence Embeddings in Generative Language Models [3.0566617373924325]
Sentence embedding is a fundamental task within the realm of Natural Language Processing, finding extensive application in search engines, expert systems, and question-and-answer platforms.
With the continuous evolution of large language models such as LLaMA and Mistral, research on sentence embedding has recently achieved notable breakthroughs.
We propose two innovative prompt engineering techniques capable of further enhancing the expressive power of PLMs' raw embeddings.
arXiv Detail & Related papers (2024-04-05T07:07:15Z) - A Survey of Large Language Models in Cybersecurity [0.5221459608786241]
Large Language Models (LLMs) have quickly risen to prominence due to their ability to perform at or close to the state-of-the-art in a variety of fields while handling natural language.
This survey aims to identify where in the field of cybersecurity LLMs have already been applied, the ways in which they are being used and their limitations in the field.
arXiv Detail & Related papers (2024-02-26T19:06:02Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
Large language models (LLMs) have been extensively studied for their abilities to generate convincing natural language sequences.
This paper explores the feasibility of LLMs as a mechanism for quantitative knowledge retrieval to aid data analysis tasks.
arXiv Detail & Related papers (2024-02-12T16:32:37Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.