Leveraging Large Language Models for Learning Complex Legal Concepts through Storytelling
- URL: http://arxiv.org/abs/2402.17019v4
- Date: Tue, 2 Jul 2024 17:50:42 GMT
- Title: Leveraging Large Language Models for Learning Complex Legal Concepts through Storytelling
- Authors: Hang Jiang, Xiajie Zhang, Robert Mahari, Daniel Kessler, Eric Ma, Tal August, Irene Li, Alex 'Sandy' Pentland, Yoon Kim, Deb Roy, Jad Kabbara,
- Abstract summary: We present a novel application of large language models (LLMs) in legal education to help non-experts learn intricate legal concepts through storytelling.
We introduce a new dataset LegalStories, which consists of 294 complex legal doctrines, each accompanied by a story and a set of multiple-choice questions.
We find that LLM-generated stories enhance comprehension of legal concepts and interest in law among non-native speakers compared to only definitions.
- Score: 43.243889347008455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Making legal knowledge accessible to non-experts is crucial for enhancing general legal literacy and encouraging civic participation in democracy. However, legal documents are often challenging to understand for people without legal backgrounds. In this paper, we present a novel application of large language models (LLMs) in legal education to help non-experts learn intricate legal concepts through storytelling, an effective pedagogical tool in conveying complex and abstract concepts. We also introduce a new dataset LegalStories, which consists of 294 complex legal doctrines, each accompanied by a story and a set of multiple-choice questions generated by LLMs. To construct the dataset, we experiment with various LLMs to generate legal stories explaining these concepts. Furthermore, we use an expert-in-the-loop approach to iteratively design multiple-choice questions. Then, we evaluate the effectiveness of storytelling with LLMs through randomized controlled trials (RCTs) with legal novices on 10 samples from the dataset. We find that LLM-generated stories enhance comprehension of legal concepts and interest in law among non-native speakers compared to only definitions. Moreover, stories consistently help participants relate legal concepts to their lives. Finally, we find that learning with stories shows a higher retention rate for non-native speakers in the follow-up assessment. Our work has strong implications for using LLMs in promoting teaching and learning in the legal field and beyond.
Related papers
- Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
Large Language Models (LLMs) could struggle to fully understand legal theories and perform legal reasoning tasks.
We introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities.
We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability.
arXiv Detail & Related papers (2024-10-03T14:15:00Z) - A Multi-Source Heterogeneous Knowledge Injected Prompt Learning Method for Legal Charge Prediction [3.52209555388364]
We propose a prompt learning framework-based method for modeling case descriptions.
We leverage multi-source external knowledge from a legal knowledge base, a conversational LLM, and legal articles.
Our method achieves state-of-the-art results on CAIL-2018, the largest legal charge prediction dataset.
arXiv Detail & Related papers (2024-08-05T04:53:17Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - Knowledge-Infused Legal Wisdom: Navigating LLM Consultation through the Lens of Diagnostics and Positive-Unlabeled Reinforcement Learning [19.55121050697779]
We propose the Diagnostic Legal Large Language Model (D3LM), which utilizes adaptive lawyer-like diagnostic questions to collect additional case information.
D3LM incorporates an innovative graph-based Positive-Unlabeled Reinforcement Learning (PURL) algorithm, enabling the generation of critical questions.
Our research also introduces a new English-language CVG dataset based on the US case law database.
arXiv Detail & Related papers (2024-06-05T19:47:35Z) - Large Language Models and Explainable Law: a Hybrid Methodology [44.99833362998488]
The paper advocates for LLMs to enhance the accessibility, usage and explainability of rule-based legal systems.
A methodology is developed to explore the potential use of LLMs for translating the explanations produced by rule-based systems.
arXiv Detail & Related papers (2023-11-20T14:47:20Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules.
We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules.
Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.
arXiv Detail & Related papers (2023-11-15T11:42:41Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
This guide aims to provide researchers and practitioners with valuable insights and best practices for working with Large Language Models.
We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios.
arXiv Detail & Related papers (2023-04-26T17:52:30Z) - A Short Survey of Viewing Large Language Models in Legal Aspect [0.0]
Large language models (LLMs) have transformed many fields, including natural language processing, computer vision, and reinforcement learning.
The integration of LLMs into the legal field has also raised several legal problems, including privacy concerns, bias, and explainability.
arXiv Detail & Related papers (2023-03-16T08:01:22Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.