A Multi-Source Heterogeneous Knowledge Injected Prompt Learning Method for Legal Charge Prediction
- URL: http://arxiv.org/abs/2408.02233v1
- Date: Mon, 5 Aug 2024 04:53:17 GMT
- Title: A Multi-Source Heterogeneous Knowledge Injected Prompt Learning Method for Legal Charge Prediction
- Authors: Jingyun Sun, Chi Wei, Yang Li,
- Abstract summary: We propose a prompt learning framework-based method for modeling case descriptions.
We leverage multi-source external knowledge from a legal knowledge base, a conversational LLM, and legal articles.
Our method achieves state-of-the-art results on CAIL-2018, the largest legal charge prediction dataset.
- Score: 3.52209555388364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal charge prediction, an essential task in legal AI, seeks to assign accurate charge labels to case descriptions, attracting significant recent interest. Existing methods primarily employ diverse neural network structures for modeling case descriptions directly, failing to effectively leverage multi-source external knowledge. We propose a prompt learning framework-based method that simultaneously leverages multi-source heterogeneous external knowledge from a legal knowledge base, a conversational LLM, and related legal articles. Specifically, we match knowledge snippets in case descriptions via the legal knowledge base and encapsulate them into the input through a hard prompt template. Additionally, we retrieve legal articles related to a given case description through contrastive learning, and then obtain factual elements within the case description through a conversational LLM. We fuse the embedding vectors of soft prompt tokens with the encoding vector of factual elements to achieve knowledge-enhanced model forward inference. Experimental results show that our method achieved state-of-the-art results on CAIL-2018, the largest legal charge prediction dataset, and our method has lower data dependency. Case studies also demonstrate our method's strong interpretability.
Related papers
- Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
This paper introduces a novel dataset tailored for classification of statements made during police interviews, prior to court proceedings.
We introduce a fine-tuned DistilBERT model that achieves state-of-the-art performance in distinguishing truthful from deceptive statements.
We also present an XAI interface that empowers both legal professionals and non-specialists to interact with and benefit from our system.
arXiv Detail & Related papers (2024-05-17T11:22:27Z) - Enhancing Contextual Understanding in Large Language Models through Contrastive Decoding [9.2433070542025]
Large language models (LLMs) tend to inadequately integrate input context during text generation.
We introduce a novel approach integrating contrastive decoding with adversarial irrelevant passages as negative samples.
arXiv Detail & Related papers (2024-05-04T20:38:41Z) - Enhancing Court View Generation with Knowledge Injection and Guidance [43.32071790286732]
Court View Generation (CVG) aims to generate court views based on the plaintiff claims and the fact descriptions.
PLMs have showcased their prowess in natural language generation, but their application to the complex, knowledge-intensive domain of CVG often reveals inherent limitations.
We present a novel approach, named Knowledge Injection and Guidance (KIG), designed to bolster CVG using PLMs.
To efficiently incorporate domain knowledge during the training stage, we introduce a knowledge-injected prompt encoder for prompt tuning, thereby reducing computational overhead.
arXiv Detail & Related papers (2024-03-07T09:51:11Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
We propose a simple yet generalisable approach for knowledge infusion by generating prompts from the context in the input text.
Our experiments show the effectiveness of our approach which we evaluate by probing the fine-tuned LLMs.
arXiv Detail & Related papers (2024-03-03T11:19:26Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
Large language models (LLMs) encode parametric knowledge about world facts.
Their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks.
We assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention.
arXiv Detail & Related papers (2023-03-20T17:54:58Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
Few-shot Learning is aimed to make predictions based on a limited number of samples.
Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks.
arXiv Detail & Related papers (2022-01-27T05:41:36Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
We focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process.
Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved.
We propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge.
arXiv Detail & Related papers (2020-09-28T10:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.