論文の概要: Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review
- arxiv url: http://arxiv.org/abs/2402.17020v1
- Date: Mon, 26 Feb 2024 20:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:09:00.274021
- Title: Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review
- Title(参考訳): 侵入検知システムにおける深層学習アルゴリズム
- Authors: Richard Kimanzi, Peter Kimanga, Dedan Cherori, Patrick K. Gikunda,
- Abstract要約: 本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increase in network attacks has necessitated the development of robust and efficient intrusion detection systems (IDS) capable of identifying malicious activities in real-time. In the last five years, deep learning algorithms have emerged as powerful tools in this domain, offering enhanced detection capabilities compared to traditional methods. This review paper studies recent advancements in the application of deep learning techniques, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems. we delve into the unique architectures, training models, and classification methodologies tailored for network traffic analysis and anomaly detection. Furthermore, we analyze the strengths and limitations of each deep learning approach in terms of detection accuracy, computational efficiency, scalability, and adaptability to evolving threats. Additionally, this paper highlights prominent datasets and benchmarking frameworks commonly utilized for evaluating the performance of deep learning-based IDS. This review will provide researchers and industry practitioners with valuable insights into the state-of-the-art deep learning algorithms for enhancing the security framework of network environments through intrusion detection.
- Abstract(参考訳): ネットワーク攻撃の増加は、リアルタイムに悪意のある活動を識別できる堅牢で効率的な侵入検知システム(IDS)の開発を必要としている。
過去5年間で、ディープラーニングアルゴリズムは、この領域で強力なツールとして登場し、従来の方法と比較して高度な検出機能を提供する。
本稿では、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、ディープリーフネットワーク(DBN)、ディープニューラルネットワーク(DNN)、Long Short-Term Memory(LSTM)、オートエンコーダ(AE)、Multi-Layer Perceptrons(MLP)、Self-Normalizing Networks(SNN)、ハイブリッドモデルなど、近年のディープラーニング技術の応用について述べる。
ネットワークトラフィック分析と異常検出に適した ユニークなアーキテクチャ、トレーニングモデル、分類方法を調べます
さらに,進化する脅威に対する検出精度,計算効率,スケーラビリティ,適応性の観点から,各ディープラーニングアプローチの長所と短所を解析する。
さらに,深層学習型IDSの性能評価によく利用される顕著なデータセットとベンチマークフレームワークを強調した。
このレビューは、侵入検知を通じてネットワーク環境のセキュリティフレームワークを強化する最先端のディープラーニングアルゴリズムについて、研究者や業界の実践者に貴重な洞察を提供する。
関連論文リスト
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)のための拡張畳み込みニューラルネットワーク(EnCNN)を提案する。
我々はEnCNNと、ロジスティック回帰、決定木、サポートベクトルマシン(SVM)、ランダムフォレスト、AdaBoost、Votting Ensembleといったアンサンブル手法など、さまざまな機械学習アルゴリズムを比較した。
その結果,EnCNNは検出精度を大幅に向上し,最先端アプローチよりも10%向上した。
論文 参考訳(メタデータ) (2024-09-27T11:20:20Z) - C-RADAR: A Centralized Deep Learning System for Intrusion Detection in Software Defined Networks [0.0]
ソフトウェア定義ネットワーク(SDN)における侵入検出におけるディープラーニング(DL)技術の利用を提案する。
以上の結果から,DLに基づく手法は,検出精度と計算効率の点で従来の手法よりも優れていた。
このテクニックは、新しい攻撃パターンを検出し、SDN全体のセキュリティを改善するためにトレーニングすることができる。
論文 参考訳(メタデータ) (2024-08-30T15:39:37Z) - Intrusion Detection: A Deep Learning Approach [0.0]
本稿では,畳み込みニューラルネットワーク(CNN)モジュールとLong Short Term Memory(LSTM)モジュール,SVM(Support Vector Machine)分類機能を備えた侵入検出システムを提案する。
この分析に続いて、従来の機械学習技術と深層学習手法を比較し、さらに探索可能な領域を強調した。
論文 参考訳(メタデータ) (2023-06-13T07:58:40Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
本稿では,侵入検出問題に適用したニューラルネットワーク手法の実験的検討を行う。
私たちは、ディープベースアプローチやウェイトレスニューラルネットワークを含む、侵入検出に関連する最も顕著なニューラルネットワークベースのテクニックの完全なビューを提供します。
我々の評価は、特に最先端のデータセットを使用してモデルのトレーニングを行う場合、ニューラルネットワークの価値を定量化する。
論文 参考訳(メタデータ) (2020-09-18T18:32:24Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs [3.8073142980733]
我々は、異なる回避攻撃の有効性と、レジリエンス深層学習に基づくIDSの訓練方法に焦点をあてる。
我々は min-max アプローチを用いて、敵の例に対して頑健なIDSを訓練する問題を定式化する。
異なるディープラーニングアルゴリズムと異なるベンチマークデータセットに関する実験により、敵の訓練に基づくmin-maxアプローチによる防御が、よく知られた5つの敵の攻撃方法に対する堅牢性を向上することを示した。
論文 参考訳(メタデータ) (2020-07-08T23:33:30Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。