論文の概要: Molecule Design by Latent Prompt Transformer
- arxiv url: http://arxiv.org/abs/2402.17179v2
- Date: Thu, 31 Oct 2024 07:36:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:56:25.175546
- Title: Molecule Design by Latent Prompt Transformer
- Title(参考訳): 潜時プロンプト変圧器による分子設計
- Authors: Deqian Kong, Yuhao Huang, Jianwen Xie, Edouardo Honig, Ming Xu, Shuanghong Xue, Pei Lin, Sanping Zhou, Sheng Zhong, Nanning Zheng, Ying Nian Wu,
- Abstract要約: 本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
- 参考スコア(独自算出の注目度): 76.2112075557233
- License:
- Abstract: This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task, where target biological properties or desired chemical constraints serve as conditioning variables. We propose the Latent Prompt Transformer (LPT), a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution modeled by a neural transformation of Gaussian white noise; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt. LPT can be learned by maximum likelihood estimation on molecule-property pairs. During property optimization, the latent prompt is inferred from target properties and constraints through posterior sampling and then used to guide the autoregressive molecule generation. After initial training on existing molecules and their properties, we adopt an online learning algorithm to progressively shift the model distribution towards regions that support desired target properties. Experiments demonstrate that LPT not only effectively discovers useful molecules across single-objective, multi-objective, and structure-constrained optimization tasks, but also exhibits strong sample efficiency.
- Abstract(参考訳): 本研究は, 分子設計の課題を条件付き生成モデリングタスクとして検討し, 目的とする生物特性や望ましい化学制約が条件変数として機能する。
本稿では,(1)ガウスホワイトノイズのニューラルトランスフォーマーによってモデル化された学習可能な事前分布を持つ潜時ベクトル,(2)潜時ベクトルをプロンプトとして用いた因果トランスフォーマーに基づく分子生成モデル,(3)潜時プロンプトを用いて分子の標的特性および/または制約値を予測する特性予測モデル,の3成分からなる新しい生成モデルを提案する。
LPTは分子-プロパティ対の最大推定によって学習することができる。
特性最適化の間、潜伏プロンプトは後部サンプリングによって標的特性と制約から推定され、自己回帰分子の生成を誘導するために使用される。
既存の分子とその特性を初期訓練した後、我々はオンライン学習アルゴリズムを採用し、モデル分布を所望の目標特性をサポートする領域へ段階的にシフトさせる。
実験により、LPTは単目的、多目的、構造制約された最適化タスクにまたがる有用な分子を効果的に発見するだけでなく、強いサンプル効率を示すことが示された。
関連論文リスト
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Molecule Design by Latent Prompt Transformer [61.68502207071992]
本稿では,分子設計などの最適化課題を解決するために,潜時変圧器モデルを提案する。
目的は、既存のソフトウェアで計算可能な、標的となる化学的または生物学的性質の最適な値を持つ分子を見つけることである。
論文 参考訳(メタデータ) (2023-10-05T02:09:51Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
本稿では,階層構造を確率論的潜在ベクトルに組み込んだ新しい深層生成モデルを提案する。
本モデルは,物理特性と活性に関する小さなデータセットを用いて,分子特性予測のための有効な分子潜在ベクトルを設計できることを実証する。
論文 参考訳(メタデータ) (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Controlled Molecule Generator for Optimizing Multiple Chemical
Properties [9.10095508718581]
2つの制約ネットワークを持つトランスフォーマーに基づく新しい最適化された分子生成モデルを提案する。
実験により,提案モデルでは,複数の特性を同時に最適化する上で,最先端モデルよりも有意な差が認められた。
論文 参考訳(メタデータ) (2020-10-26T21:26:14Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。