PE-MVCNet: Multi-view and Cross-modal Fusion Network for Pulmonary Embolism Prediction
- URL: http://arxiv.org/abs/2402.17187v3
- Date: Wed, 17 Apr 2024 11:08:02 GMT
- Title: PE-MVCNet: Multi-view and Cross-modal Fusion Network for Pulmonary Embolism Prediction
- Authors: Zhaoxin Guo, Zhipeng Wang, Ruiquan Ge, Jianxun Yu, Feiwei Qin, Yuan Tian, Yuqing Peng, Yonghong Li, Changmiao Wang,
- Abstract summary: Early detection of a pulmonary embolism (PE) is critical for enhancing patient survival rates.
We suggest a multimodal fusion methodology, termed PE-MVCNet, which capitalizes on Computed Tomography Pulmonary Angiography imaging and EMR data.
Our proposed model outperforms existing methodologies, corroborating that our multimodal fusion model excels compared to models that use a single data modality.
- Score: 4.659998272408215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The early detection of a pulmonary embolism (PE) is critical for enhancing patient survival rates. Both image-based and non-image-based features are of utmost importance in medical classification tasks. In a clinical setting, physicians tend to rely on the contextual information provided by Electronic Medical Records (EMR) to interpret medical imaging. However, very few models effectively integrate clinical information with imaging data. To address this shortcoming, we suggest a multimodal fusion methodology, termed PE-MVCNet, which capitalizes on Computed Tomography Pulmonary Angiography imaging and EMR data. This method comprises the Image-only module with an integrated multi-view block, the EMR-only module, and the Cross-modal Attention Fusion (CMAF) module. These modules cooperate to extract comprehensive features that subsequently generate predictions for PE. We conducted experiments using the publicly accessible Stanford University Medical Center dataset, achieving an AUROC of 94.1%, an accuracy rate of 90.2%, and an F1 score of 90.6%. Our proposed model outperforms existing methodologies, corroborating that our multimodal fusion model excels compared to models that use a single data modality. Our source code is available at https://github.com/LeavingStarW/PE-MVCNET.
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements.
We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods.
arXiv Detail & Related papers (2024-03-20T05:50:04Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Parkinson's Disease Classification Using Contrastive Graph Cross-View Learning with Multimodal Fusion of SPECT Images and Clinical Features [5.660131312162423]
Parkinson's Disease (PD) affects millions globally, impacting movement.
Prior research utilized deep learning for PD prediction, primarily focusing on medical images, neglecting the data's underlying manifold structure.
This work proposes a multimodal approach encompassing both image and non-image features, leveraging contrastive cross-view graph fusion for PD classification.
arXiv Detail & Related papers (2023-11-25T02:32:46Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - A New Multimodal Medical Image Fusion based on Laplacian Autoencoder
with Channel Attention [3.1531360678320897]
Deep learning models have achieved end-to-end image fusion with highly robust and accurate performance.
Most DL-based fusion models perform down-sampling on the input images to minimize the number of learnable parameters and computations.
We propose a new multimodal medical image fusion model is proposed that is based on integrated Laplacian-Gaussian concatenation with attention pooling.
arXiv Detail & Related papers (2023-10-18T11:29:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - RadFusion: Benchmarking Performance and Fairness for Multimodal
Pulmonary Embolism Detection from CT and EHR [14.586822005217485]
We present RadFusion, a benchmark dataset of 1794 patients with corresponding EHR data and CT scans labeled for pulmonary embolism.
Our results suggest that integrating imaging and EHR data can improve classification performance without introducing large disparities in the true positive rate between population groups.
arXiv Detail & Related papers (2021-11-23T06:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.