論文の概要: Differentiable Biomechanics Unlocks Opportunities for Markerless Motion
Capture
- arxiv url: http://arxiv.org/abs/2402.17192v1
- Date: Tue, 27 Feb 2024 04:18:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 17:53:19.756482
- Title: Differentiable Biomechanics Unlocks Opportunities for Markerless Motion
Capture
- Title(参考訳): 多様なバイオメカニクスがマーカーレスモーションキャプチャーの機会を解き放つ
- Authors: R. James Cotton
- Abstract要約: 微分物理学シミュレータはGPU上で加速することができる。
これらのシミュレータは,逆運動学とマーカーレスモーションキャプチャーデータとの適合性を示す。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent developments have created differentiable physics simulators designed
for machine learning pipelines that can be accelerated on a GPU. While these
can simulate biomechanical models, these opportunities have not been exploited
for biomechanics research or markerless motion capture. We show that these
simulators can be used to fit inverse kinematics to markerless motion capture
data, including scaling the model to fit the anthropomorphic measurements of an
individual. This is performed end-to-end with an implicit representation of the
movement trajectory, which is propagated through the forward kinematic model to
minimize the error from the 3D markers reprojected into the images. The
differential optimizer yields other opportunities, such as adding bundle
adjustment during trajectory optimization to refine the extrinsic camera
parameters or meta-optimization to improve the base model jointly over
trajectories from multiple participants. This approach improves the
reprojection error from markerless motion capture over prior methods and
produces accurate spatial step parameters compared to an instrumented walkway
for control and clinical populations.
- Abstract(参考訳): 近年、gpu上で高速化可能な機械学習パイプライン用に設計された微分可能な物理シミュレータが開発されている。
これらは生体力学モデルをシミュレートできるが、生体力学の研究やマーカーレスモーションキャプチャーには利用されていない。
これらのシミュレータは,個人の擬人化計測に適合するようにモデルをスケーリングすることを含む,マーカーレスモーションキャプチャデータに逆キネマティックスを適合させることができる。
これは運動軌跡の暗黙的な表現でエンドツーエンドに行われ、前方運動モデルによって伝播され、画像に再投影された3Dマーカーからの誤差を最小限に抑える。
ディファレンシャルオプティマイザは、トラジェクトリ最適化中にバンドル調整を加えて外部カメラパラメータを洗練させたり、メタ最適化して、複数の参加者のトラジェクトリと共同でベースモデルを改善するといった他の機会をもたらす。
提案手法は, 前手法によるマーカーレスモーションキャプチャーによる再投影誤差を改善し, 制御・臨床用歩行路と比較して正確な空間ステップパラメータを生成する。
関連論文リスト
- Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
様々な動きによって生じる画像のぼかしを除去することは、難しい問題である。
本研究では,動き適応型分離型協調フィルタと呼ばれる実世界のデブロアリングフィルタモデルを提案する。
本手法は,実世界の動きのぼかし除去に有効な解法を提供し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-19T19:44:24Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Visual-Inertial Odometry with Online Calibration of Velocity-Control
Based Kinematic Motion Models [3.42658286826597]
視覚慣性オドメトリー(VIO)は、パワーとペイロードの制約のある自律ロボットにとって重要な技術である。
本稿では,車輪付き移動ロボットの速度制御に基づく運動モデルの統合と校正を行うステレオカメラを用いたVIOの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-14T06:21:12Z) - MotionAug: Augmentation with Physical Correction for Human Motion
Prediction [19.240717471864723]
本稿では,動き合成を取り入れた動きデータ拡張手法を提案する。
提案手法は,リカレントニューラルネットワークとグラフ畳み込みネットワークを併用した人間の動き予測モデルにおいて,従来の雑音に基づく動き増進手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-17T06:53:15Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - TomoSLAM: factor graph optimization for rotation angle refinement in
microtomography [0.0]
試料、検出器、信号源の相対軌道は伝統的に知られていると考えられている。
機械的反発、回転センサ測定誤差、熱変形、実際の軌道は所望のものとは異なる。
本研究の科学的新規性は、マイクロトモグラフィーにおける軌道改善の問題をSLAM問題として考察することである。
論文 参考訳(メタデータ) (2021-11-10T08:00:46Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
過去の情報と制御信号に基づく長地平線運動系列を合成・再構築する確率生成モデルを提案する。
足踏み解析と骨長解析を併用したモーションキャプチャデータセットを用いたモデル評価を行った。
論文 参考訳(メタデータ) (2021-04-07T09:51:15Z) - MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying
Motions [70.30211294212603]
本稿では,空間と時間の両方に連続する時空変動を予測できる新たな次元からビデオ予測を行う。
本研究では,動きの複雑な変動を捉え,時空変化に適応できるMotionRNNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-03T08:11:50Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Learning a Generative Motion Model from Image Sequences based on a
Latent Motion Matrix [8.774604259603302]
画像列の時間的登録をシミュレートして確率的動きモデルを学ぶ。
3つの最先端登録アルゴリズムと比較して,登録精度と時間的にスムーズな整合性が改善された。
また, フレームの欠落のあるシーケンスからの動作再構成を改良し, 動作解析, シミュレーション, 超解像に対するモデルの適用性を実証した。
論文 参考訳(メタデータ) (2020-11-03T14:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。