Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response
- URL: http://arxiv.org/abs/2402.17233v2
- Date: Tue, 11 Jun 2024 15:25:01 GMT
- Title: Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response
- Authors: Bob Junyi Zou, Matthew E. Levine, Dessi P. Zaharieva, Ramesh Johari, Emily B. Fox,
- Abstract summary: We show how to achieve a win-win, state-of-the-art predictive performance emphand causal validity.
We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance emphand causal validity in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
- Score: 5.754225700181611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid models composing mechanistic ODE-based dynamics with flexible and expressive neural network components have grown rapidly in popularity, especially in scientific domains where such ODE-based modeling offers important interpretability and validated causal grounding (e.g., for counterfactual reasoning). The incorporation of mechanistic models also provides inductive bias in standard blackbox modeling approaches, critical when learning from small datasets or partially observed, complex systems. Unfortunately, as the hybrid models become more flexible, the causal grounding provided by the mechanistic model can quickly be lost. We address this problem by leveraging another common source of domain knowledge: \emph{ranking} of treatment effects for a set of interventions, even if the precise treatment effect is unknown. We encode this information in a \emph{causal loss} that we combine with the standard predictive loss to arrive at a \emph{hybrid loss} that biases our learning towards causally valid hybrid models. We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance \emph{and} causal validity, in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
Related papers
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
We build upon a spatially and demographically resolved infectious disease model and train a graph neural network for data sets representing early phases of the pandemic.
The suggested approach yields potential for on-the-fly execution and, thus, integration of disease dynamics models in low-barrier website applications.
arXiv Detail & Related papers (2024-11-10T15:54:09Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
We study cascading failures in power grids through the lens of diffusion models.
Our model integrates viral diffusion principles with physics-based concepts.
We show that this diffusion model can be learned from traces of cascading failures.
arXiv Detail & Related papers (2024-06-12T02:34:24Z) - Causal hybrid modeling with double machine learning [4.190790144182304]
Hybrid modeling integrates machine learning with scientific knowledge to enhance interpretability, generalization, and adherence to natural laws.
This paper introduces a novel approach to estimating hybrid models via a causal inference framework, specifically employing Double Machine Learning (DML) to estimate causal effects.
We demonstrate that DML-based hybrid modeling is superior in estimating causal parameters over end-to-end deep neural network (DNN) approaches, proving efficiency, robustness to bias from regularization methods, and circumventing equifinality.
arXiv Detail & Related papers (2024-02-20T19:19:56Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models.
Here, we introduce a simple mixture-based model which bridges the two approaches.
Although the model is non-mechanistic, we show that it arises as the natural outcome of a process based on a networked SIR framework.
arXiv Detail & Related papers (2022-01-07T19:42:05Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
We show that the hybrid modeling process is more comfortable, needs less system knowledge and is less error-prone compared to modeling solely based on first principle.
The resulting hybrid model has improved in computation performance, compared to a pure first principle white-box model.
The considered use-case can serve as example for other modeling and simulation applications in and beyond the medical domain.
arXiv Detail & Related papers (2021-09-10T13:48:43Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.