RIME: Robust Preference-based Reinforcement Learning with Noisy Preferences
- URL: http://arxiv.org/abs/2402.17257v4
- Date: Mon, 28 Oct 2024 12:26:53 GMT
- Title: RIME: Robust Preference-based Reinforcement Learning with Noisy Preferences
- Authors: Jie Cheng, Gang Xiong, Xingyuan Dai, Qinghai Miao, Yisheng Lv, Fei-Yue Wang,
- Abstract summary: Preference-based Reinforcement Learning (PbRL) circumvents the need for reward engineering by harnessing human preferences as the reward signal.
We present RIME, a robust PbRL algorithm for effective reward learning from noisy preferences.
- Score: 23.414135977983953
- License:
- Abstract: Preference-based Reinforcement Learning (PbRL) circumvents the need for reward engineering by harnessing human preferences as the reward signal. However, current PbRL methods excessively depend on high-quality feedback from domain experts, which results in a lack of robustness. In this paper, we present RIME, a robust PbRL algorithm for effective reward learning from noisy preferences. Our method utilizes a sample selection-based discriminator to dynamically filter out noise and ensure robust training. To counteract the cumulative error stemming from incorrect selection, we suggest a warm start for the reward model, which additionally bridges the performance gap during the transition from pre-training to online training in PbRL. Our experiments on robotic manipulation and locomotion tasks demonstrate that RIME significantly enhances the robustness of the state-of-the-art PbRL method. Code is available at https://github.com/CJReinforce/RIME_ICML2024.
Related papers
- Listwise Reward Estimation for Offline Preference-based Reinforcement Learning [20.151932308777553]
Listwise Reward Estimation (LiRE) is a novel approach for offline Preference-based Reinforcement Learning (PbRL)
LiRE builds on existing PbRL methods by constructing a Ranked List of Trajectories (RLT)
Our experiments demonstrate the superiority of LiRE, even with modest feedback budgets and enjoying robustness with respect to the number of feedbacks and feedback noise.
arXiv Detail & Related papers (2024-08-08T03:18:42Z) - Efficient Preference-based Reinforcement Learning via Aligned Experience Estimation [37.36913210031282]
Preference-based reinforcement learning (PbRL) has shown impressive capabilities in training agents without reward engineering.
We propose SEER, an efficient PbRL method that integrates label smoothing and policy regularization techniques.
arXiv Detail & Related papers (2024-05-29T01:49:20Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Direct Preference-based Policy Optimization without Reward Modeling [25.230992130108767]
Preference-based reinforcement learning (PbRL) is an approach that enables RL agents to learn from preference.
We propose a PbRL algorithm that directly learns from preference without requiring any reward modeling.
We show that our algorithm surpasses offline RL methods that learn with ground-truth reward information.
arXiv Detail & Related papers (2023-01-30T12:51:13Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - B-Pref: Benchmarking Preference-Based Reinforcement Learning [84.41494283081326]
We introduce B-Pref, a benchmark specially designed for preference-based RL.
A key challenge with such a benchmark is providing the ability to evaluate candidate algorithms quickly.
B-Pref alleviates this by simulating teachers with a wide array of irrationalities.
arXiv Detail & Related papers (2021-11-04T17:32:06Z) - Preference-based Reinforcement Learning with Finite-Time Guarantees [76.88632321436472]
Preference-based Reinforcement Learning (PbRL) replaces reward values in traditional reinforcement learning to better elicit human opinion on the target objective.
Despite promising results in applications, the theoretical understanding of PbRL is still in its infancy.
We present the first finite-time analysis for general PbRL problems.
arXiv Detail & Related papers (2020-06-16T03:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.