論文の概要: Learning Exposure Correction in Dynamic Scenes
- arxiv url: http://arxiv.org/abs/2402.17296v3
- Date: Tue, 3 Sep 2024 07:38:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:31:47.173270
- Title: Learning Exposure Correction in Dynamic Scenes
- Title(参考訳): ダイナミックシーンにおける露光補正の学習
- Authors: Jin Liu, Bo Wang, Chuanming Wang, Huiyuan Fu, Huadong Ma,
- Abstract要約: 我々は、露光不足と露光過多の両方を含む、世界初の実世界のペアビデオデータセットを構築した。
両ストリームモジュールは、露光不足と露光過多の両方に対処するように設計されている。
- 参考スコア(独自算出の注目度): 24.302307771649232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exposure correction aims to enhance visual data suffering from improper exposures, which can greatly improve satisfactory visual effects. However, previous methods mainly focus on the image modality, and the video counterpart is less explored in the literature. Directly applying prior image-based methods to videos results in temporal incoherence with low visual quality. Through thorough investigation, we find that the development of relevant communities is limited by the absence of a benchmark dataset. Therefore, in this paper, we construct the first real-world paired video dataset, including both underexposure and overexposure dynamic scenes. To achieve spatial alignment, we utilize two DSLR cameras and a beam splitter to simultaneously capture improper and normal exposure videos. Additionally, we propose an end-to-end video exposure correction network, in which a dual-stream module is designed to deal with both underexposure and overexposure factors, enhancing the illumination based on Retinex theory. The extensive experiments based on various metrics and user studies demonstrate the significance of our dataset and the effectiveness of our method. The code and dataset are available at https://github.com/kravrolens/VECNet.
- Abstract(参考訳): 露出補正は、不適切な露光に苦しむ視覚データを強化することを目的としており、良好な視覚効果を大幅に向上させることができる。
しかし、従来の手法は主に画像のモダリティに焦点を合わせており、ビデオは文献ではあまり研究されていない。
ビデオに先行画像に基づく手法を直接適用すると、時間的不整合が低画質で生じる。
徹底的な調査により,ベンチマークデータセットの欠如により,関連するコミュニティの開発が制限されることが判明した。
そこで,本稿では,露光不足と露光過多の両方を含む,世界初の実世界のペアビデオデータセットを構築した。
空間アライメントを実現するために,2台のデジタル一眼レフカメラとビームスプリッタを用いて不適切な露光映像と通常の露光映像を同時に撮影する。
さらに,両ストリームモジュールが露光不足と露光過多の両方に対処するように設計され,Retinex理論に基づく照度を向上するエンド・ツー・エンドの映像露出補正ネットワークを提案する。
各種測定値とユーザスタディに基づく広範囲な実験により,データセットの重要性と本手法の有効性が示された。
コードとデータセットはhttps://github.com/kravrolens/VECNetで公開されている。
関連論文リスト
- BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
本稿では,2つの異なる低照度条件下での様々な動きシナリオを持つ40のシーンからなる低照度映像データセットを提案する。
我々は、プログラム可能なモータードリーを用いて、通常の光で捉えた完全に登録された地上真実データを提供し、異なる光レベルにわたるピクセルワイドフレームアライメントのための画像ベースアプローチによりそれを洗練する。
実験の結果,Low-light Video enhancement (LLVE) における完全登録ビデオペアの重要性が示された。
論文 参考訳(メタデータ) (2024-07-03T22:41:49Z) - BVI-Lowlight: Fully Registered Benchmark Dataset for Low-Light Video Enhancement [44.1973928137492]
本稿では,2つの低照度条件下での様々な動きシナリオにおける40のシーンからなる,新しい低照度映像データセットを提案する。
我々は、プログラム可能な電動ドリーを用いて、通常の光で捉えた完全に登録された地上真実データを提供する。
画像ベースのポストプロセッシングによりそれらを洗練し、異なる光レベルにおけるフレームの画素ワイドアライメントを保証する。
論文 参考訳(メタデータ) (2024-02-03T00:40:22Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - ExReg: Wide-range Photo Exposure Correction via a Multi-dimensional
Regressor with Attention [6.142272540492936]
光露光補正は広く研究されているが、露光画像と露光画像の同時修正に焦点を当てた研究は少ない。
多次元回帰プロセスとして露光補正を定式化して課題に対処する新しい露光補正ネットワークであるExRegを提案する。
実験により、ExRegはよく露呈した結果を生成し、PSNRの1.3dBでSOTA法を上回り、広範囲な露光問題に対処できることが示された。
論文 参考訳(メタデータ) (2022-12-14T15:45:10Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z) - Learning Multi-Scale Photo Exposure Correction [51.57836446833474]
露出を間違えた写真を撮影することは、カメラベースの画像の誤りの主な原因である。
本稿では,各サブプロブレムに個別に対処する粗大な深層ニューラルネットワーク(DNN)モデルを提案する。
提案手法は,未露出画像における既存の最先端手法と同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-25T19:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。