Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese
- URL: http://arxiv.org/abs/2402.17302v3
- Date: Sat, 05 Oct 2024 02:02:27 GMT
- Title: Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese
- Authors: Rifki Afina Putri, Faiz Ghifari Haznitrama, Dea Adhista, Alice Oh,
- Abstract summary: Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models.
It is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language.
In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages.
- Score: 14.463110500907492
- License:
- Abstract: Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models. However, it is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language, especially for low-resource languages. In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages. To do so, we create datasets for these languages using various methods involving both LLMs and human annotators, resulting in ~4.5K questions per language (~9K in total), making our dataset the largest of its kind. Our experiments show that automatic data adaptation from an existing English dataset is less effective for Sundanese. Interestingly, using the direct generation method on the target language, GPT-4 Turbo can generate questions with adequate general knowledge in both languages, albeit not as culturally 'deep' as humans. We also observe a higher occurrence of fluency errors in the Sundanese dataset, highlighting the discrepancy between medium- and lower-resource languages.
Related papers
- INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages [26.13077589552484]
Indic-QA is the largest publicly available context-grounded question-answering dataset for 11 major Indian languages from two language families.
We generate a synthetic dataset using the Gemini model to create question-answer pairs given a passage, which is then manually verified for quality assurance.
We evaluate various multilingual Large Language Models and their instruction-fine-tuned variants on the benchmark and observe that their performance is subpar, particularly for low-resource languages.
arXiv Detail & Related papers (2024-07-18T13:57:16Z) - NativQA: Multilingual Culturally-Aligned Natural Query for LLMs [12.35947908812959]
We propose a language-independent framework, NativQA, to seamlessly construct culturally and regionally aligned QA datasets in native languages.
We demonstrate the efficacy of the proposed framework by designing a multilingual natural QA dataset, mnqa, consisting of 64k manually annotated QA pairs in seven languages.
We also showcase the framework efficacy in constructing fine-tuning data especially for low-resource and dialectally-rich languages.
arXiv Detail & Related papers (2024-07-13T09:34:00Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans [27.84922167294656]
It is challenging to curate a dataset for language-specific knowledge and common sense.
Most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects.
We propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction.
arXiv Detail & Related papers (2024-06-06T16:14:54Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [50.22847430754973]
Large language models are not good at math theorem proving using formal languages like Lean.
A significant challenge in this area is the scarcity of training data available in these formal languages.
We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages [0.0]
We introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages.
Our goal is to enhance access and utilization of these resources, extending their reach within the country.
arXiv Detail & Related papers (2024-04-01T09:24:06Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
Multilingual large language models (MLLMs) are jointly trained on data from many different languages.
It remains unclear to what extent, and under which conditions, languages rely on each other's data.
We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses.
arXiv Detail & Related papers (2023-05-22T17:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.